Skip to main content
Log in

Modeling of Atmospheric Disturbances over the Crimean Mountains

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

In using the nonlinear analytical model of the flow over the mountains, orographic disturbances and model adequacy are studied. Theoretically calculated trajectories of motion and disturbances of temperature and humidity are compared to stereo-photogrammetric measurements of wave clouds. It is shown that the model successfully describes the spatial structure and amplitudes of disturbances in the troposphere beyond the turbulent surface air. It is established that, on days of cloud observations, turbulent processes in the surface air do not strongly affect wavy processes at heights over 2.5 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Dorodnitsyn, “Airflow disturbances caused by Earth surface inhomogeneities,” Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, No. 23 (1938).

  2. G. Lyra, “Theorie der stationären Leewellenströmung in freier Atmosphäre,” Z. Angew. Math. Mech. 23 (1), 1–28 (1943).

    Article  Google Scholar 

  3. R. S. Scorer, Environmental Aerodynamics (Wiley, New York, 1978; Mir, Moscow, 1980).

  4. R. R. Long, “Some aspects of the flow of stratified fluids. III. Continuous density gradients,” Tellus 7 (3), 341–357 (1955).

    Article  Google Scholar 

  5. L. N. Gutman, Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  6. V. N. Kozhevnikov, Atmospheric Disturbances in Airflow around Mountains (Nauchnyi mir, Moscow, 1999) [in Russian].

  7. J. W. Miles, “Lee waves in a stratified flow. Part II. Semi-circular obstacle,” J. Fluid Mech. 33 (4), 803–814 (1968).

    Article  Google Scholar 

  8. Y.-L. Lin, Mesoscale Dynamics (Cambridge University Press, Cambridge, 2007).

    Book  Google Scholar 

  9. P. A. Toropov, S. A. Myslenko, and T. E. Samsonov, “Numerical simulation of the Novorossiysk bora and the related wind waves,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 38–46 (2013).

  10. V. V. Efimov and V. S. Barabanov, “Simulation of bora in Novorossiysk,” Russ. Meteorol. Hydrol. 38 (3), 171–176 (2013).

    Article  Google Scholar 

  11. P. A. Toropov and A. A. Shestakova, “Testing the WRF mesoscale model for the Novorossiysk bora forecast,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 3, 23–29 (2014).

  12. A. V. Gavrikov and A. Yu. Ivanov, “Anomalously strong bora over the Black Sea: Observations from space and numerical modeling,” Izv., Atmos. Ocean. Phys. 51 (5), 546–556 (2015).

    Article  Google Scholar 

  13. A. A. Shestakova, K. B. Moiseenko, and P. A. Toropov, “Hydrodynamic aspects of the Novorossiysk bora episodes in 2012–2013,” Izv., Atmos. Ocean. Phys. 51 (5), 534–545 (2015).

    Article  Google Scholar 

  14. E. Gossard and W. Hooke, Waves in the Atmosphere (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).

  15. V. N. Kozhevnikov, “A nonlinear problem of orographic disturbance of a stratified airflow,” Izv. Akad. Nauk SSSR: Ser. Geofiz., No. 7, 1108–1116 (1963).

  16. T. N. Bibikova, E. V. Zhurba, V. Z. Kisel’nikova, and V. N. Kozhevnikov, “Lee-wave orographic disturbances in the Crimea,” Tr. Gidrometeorol. Tsentra SSSR, No. 238, 93–111 (1981).

    Google Scholar 

  17. V. N. Kozhevnikov, T. N. Bibikova, and E. V. Zhurba, “Orographic waves, clouds, and curls with horizontal axis over the Crimean Mountains,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 22 (7), 682–690 (1986).

    Google Scholar 

  18. V. N. Kozhevnikov and M. K. Bedanokov, “A nonlinear multilayer model of airflow around an arbitrary profile,” Izv. Ross. Akad. Nauk: Fiz. Atmos. Okeana 29 (6), 780–792 (1993).

    Google Scholar 

  19. V. N. Kozhevnikov and M. K. Bedanokov, “Wave disturbances over the Crimean Mountains: Theory and observations,” Izv., Atmos. Ocean. Phys. 34 (4), 491–500 (1998).

    Google Scholar 

  20. V. N. Kozhevnikov, Candidate’s Dissertation in Mathematics and Physics (Moscow State University, Moscow, 1965).

  21. V. N. Kozhevnikov, “Orographic disturbances in a two-dimensional stationary problem,” Izv. Akad. Nauk SSSR 4 (1), 33–52 (1968).

    Google Scholar 

  22. V. N. Kozhevnikov and A. S. Losev, “Construction of a model of airflow around an object for a boundary condition strictly satisfied on a cylindrical profile,” Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 23 (5), 43–50 (1985).

    Google Scholar 

  23. A. Gill, Atmosphere–Ocean Dynamics (Academic, London, 1982; Mir, Moscow, 1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kozhevnikov.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikov, V.N. Modeling of Atmospheric Disturbances over the Crimean Mountains. Izv. Atmos. Ocean. Phys. 55, 344–351 (2019). https://doi.org/10.1134/S0001433819040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433819040066

Keywords:

Navigation