Skip to main content
Log in

Insighti Upgrading Caking Property of Shenmu Long Flame Coal Using Low-temperature Slow Pyrolysis Treatment

  • MISCELLANEOUS
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

We proposed a low-temperature slow pyrolysis treatment (LTSPT) to improve the caking property of Shenmu long flame coal (SMCY). To reveal the factors affecting the caking property of SMCY, Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance spectroscopy, Raman spectroscopy, and pyrolysis-gas chromatography with mass spectrometric were used to analyze the changes in the chemical properties of the pyrolysis products. The results showed that LTSPT could significantly improve the caking index of SMCY, and it increased with the increase in temperature. LTSPT could decrease the content of oxygen; therefore, the consumption of hydrogen decreased, indicating that the increased hydrogen radicals can be produced, which serve as stabilizers for the aromatic radicals generated from coal pyrolysis. As a result, relatively high-molecular weight aromatic free radicals are inhibited from cross-linking into semi-coke. On the other hand, SMCY with a suitable upgrading degree possessed a suitable content of aromatic hydrocarbons, which are precursors of caking components. The combined effects of the abovementioned two factors led to the increase in caking index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Mohanty, A., Chakladar, S., Mallick, S., and Chakravarty, S., Structural characterization of coking component of an Indian coking coal, Fuel, 2019, vol. 249, pp. 411–417. https://doi.org/10.1016/j.fuel.2019.03.108

    Article  CAS  Google Scholar 

  2. Wang, S., Song, H., Bai, S., Ye, Yo., Xie, R., Zhao, Z., Liu, X., and Cui, P., Mechanism of destruction of caking property of a coking coal using low-temperature pyrolysis treatment, J. Anal. Appl. Pyrolysis, 2022, vol. 168, p. 105764. https://doi.org/10.1016/j.jaap.2022.105764

    Article  CAS  Google Scholar 

  3. Chen, Yi., Lee, S., Tahmasebi, A., Bai, J., Mahoney, M., and Yu, J., A review of the state-of-the-art research on carbon structure evolution during the coking process: From plastic layer chemistry to 3D carbon structure establishment, Fuel, 2020, vol. 271, p. 117657. https://doi.org/10.1016/j.fuel.2020.117657

    Article  CAS  Google Scholar 

  4. Li, K., Khanna, R., Zhang, J., Liu, Z., Sahajwalla, V., Yang, T., and Kong, D., The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: A review, Fuel, 2014, vol. 133, pp. 194–215. https://doi.org/10.1016/j.fuel.2014.05.014

    Article  CAS  Google Scholar 

  5. Xing, X., Effects of coal interactions during cokemaking on coke properties under simulated blast furnace conditions, Fuel Process. Technol., 2020, vol. 199, p. 106274. https://doi.org/10.1016/j.fuproc.2019.106274

    Article  CAS  Google Scholar 

  6. Kundu, N., Biswas, P., Bhunia, P., Ghosh, R., and Sarkar, S., Evolution characteristics of metallurgical coals for coke making through thermogravimetric-mass spectroscopic measurements, J. Environ. Chem. Eng., 2021, vol. 9, no. 6, p. 106874. https://doi.org/10.1016/j.jece.2021.106874

    Article  CAS  Google Scholar 

  7. Qin, L., Han, J., Zhao, B., Chen, W., and Wan, Yo., Synergistic effect for co-coking of sawdust and coal blending based on the chemical structure transformation, J. Energy Inst., 2020, vol. 93, no. 6, pp. 2215–2227. https://doi.org/10.1016/j.joei.2020.06.003

    Article  CAS  Google Scholar 

  8. Andriopoulos, N., Loo, C.E., Dukino, R., and McGuire, S.J., Micro-properties of Australian Coking Coals, ISIJ Int., 2003, vol. 43, no. 10, pp. 1528–1537. https://doi.org/10.2355/isijinternational.43.1528

    Article  CAS  Google Scholar 

  9. Liu, X., Ling, Q., Zhao, Z., Xie, R., Yu, D., Ke, Q., Lei, Z., and Cui, P., Effects of low-temperature rapid pyrolysis treatment on the improvement in caking property of a Chinese sub-bituminous coal, J. Anal. Appl. Pyrolysis, 2018, vol. 135, pp. 319–326. https://doi.org/10.1016/j.jaap.2018.08.021

    Article  CAS  Google Scholar 

  10. Nomura, S., Recent developments in cokemaking technologies in Japan, Fuel Process. Technol., 2017, vol. 159, pp. 1–8. https://doi.org/10.1016/j.fuproc.2017.01.016

    Article  CAS  Google Scholar 

  11. Zhang, L., Wang, G., Xue, Q., Zuo, H., She, X., and Wang, J., Effect of preheating on coking coal and metallurgical coke properties: A review, Fuel Process. Technol., 2021, vol. 221, p. 106942. https://doi.org/10.1016/j.fuproc.2021.106942

    Article  CAS  Google Scholar 

  12. Krzesińska, M., Szeluga, U., Czajkowska, S., Muszyński, J., Zachariasz, J., Pusz, S., Kwiecińska, B., Koszorek, A., and Pilawa, B., The thermal decomposition studies of three Polish bituminous coking coals and their blends, Int. J. Coal Geol., 2009, vol. 77, nos. 3–4, pp. 350–355. https://doi.org/10.1016/j.coal.2008.02.001

    Article  CAS  Google Scholar 

  13. Liu, X., Li, G., Zhao, H., Cheng, F., Xie, R., Zhao, Z., and Cui, P., Upgrading deashed Huadian oil shale using low-temperature pyrolysis treatment and its application in coal-blending coking, Fuel Process. Technol., 2021, vol. 223, p. 106994. https://doi.org/10.1016/j.fuproc.2021.106994

    Article  CAS  Google Scholar 

  14. Shui, H., Zhang, X., Wang, Z., Lin, C., Lei, Z., Ren, S., and Kang, S., Modification of a sub-bituminous coal by hydrothermal treatment with the addition of CaO: Extraction and caking properties, Energy Fuels, 2012, vol. 26, no. 5, pp. 2928–2933. https://doi.org/10.1021/ef300391b

    Article  CAS  Google Scholar 

  15. Han, K., Fang, Y., Chen, Y., Wang, S., Liu, X., and Cui, P., Effects of imidazole ionic Liquids with different chain lengths on caking property of Shenhua long-flame coal, Coke Chem., 2023, vol. 66, no. 10, pp. 544–553. https://doi.org/10.3103/S1068364X23701235

    Article  Google Scholar 

  16. Patrick, J.W., Green, P.D., Thomas, K.M., and Wal-ker, A., The influence of pressure on the development of optical anisotropy during carbonization of coal, Fuel, 1989, vol. 68, no. 2, pp. 149–154. https://doi.org/10.1016/0016-2361(89)90315-3

    Article  CAS  Google Scholar 

  17. Aziz, H., Rodrigues, S., Esterle, J.S., and Steel, K.M., Interactions between vitrinite and solid additives including inertinite during pyrolysis for coke-making considerations, Fuel Process. Technol., 2020, vol. 201, p. 106321. https://doi.org/10.1016/j.fuproc.2019.106321

    Article  CAS  Google Scholar 

  18. Van Heek, K.H. and Hodek, W., Structure and pyrolysis behaviour of different coals and relevant model substances, Fuel, 1994, vol. 73, no. 6, pp. 886–896. https://doi.org/10.1016/0016-2361(94)90283-6

    Article  CAS  Google Scholar 

  19. Li, X., Qin, Z., Bu, L., Yang, Z., and Shen, C., Structural analysis of functional group and mechanism investigation of caking property of coking coal, J. Fuel Chem. Technol., 2016, vol. 44, no. 4, pp. 385–393. https://doi.org/10.1016/s1872-5813(16)30019-6

    Article  CAS  Google Scholar 

  20. Liu, X., Song, H., Han, K., Hu, J., Zhao, Z., and Cui, P., Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale, Energy, 2023, vol. 285, p. 128678. https://doi.org/10.1016/j.energy.2023.128678

    Article  CAS  Google Scholar 

  21. Chen, B., Han, X., and Jiang, X., In situ FTIR analysis of the evolution of functional groups of oil shale during pyrolysis, Energy Fuels, 2016, vol. 30, no. 7, pp. 5611–5616. https://doi.org/10.1021/acs.energyfuels.6b00885

    Article  CAS  Google Scholar 

  22. Chen, C., Tang, Yu., and Guo, X., Comparison of structural characteristics of high-organic-sulfur and low-organic-sulfur coal of various ranks based on FTIR and Raman spectroscopy, Fuel, 2022, vol. 310, p. 122362. https://doi.org/10.1016/j.fuel.2021.122362

    Article  CAS  Google Scholar 

  23. Zhao, L., Guanhua, N., Hui, W., Qian, S., Gang, W., Bingyou, J., and Chao, Z., Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy, Fuel, 2020, vol. 272, p. 117705. https://doi.org/10.1016/j.fuel.2020.117705

    Article  CAS  Google Scholar 

  24. Xu, J., Tang, H., Su, S., Liu, J., Han, H., Zhang, L., Xu, K., Wang, Yi., Hu, S., Zhou, Yi., and Xiang, J., Micro-Raman spectroscopy study of 32 kinds of chinese coals: Second-order Raman spectrum and its correlations with coal properties, Energy Fuels, 2017, vol. 31, no. 8, pp. 7884–7893. https://doi.org/10.1021/acs.energyfuels.7b00990

    Article  CAS  Google Scholar 

  25. Xu, Ya., Chen, X., Wang, L., Bei, K., Wang, J., Chou, I., and Pan, Z., Progress of Raman spectroscopic investigations on the structure and properties of coal, J. Raman Spectrosc., 2020, vol. 51, no. 9, pp. 1874–1884. https://doi.org/10.1002/jrs.5826

    Article  CAS  Google Scholar 

  26. He, Q., Jiang, X., Xu, J., Wang, C., Jiang, M., Wang, G., Jiang, L., Xu, K., Wang, Yi., Su, S., Hu, S., and Xiang, J., Heterogeneous chemical structures of single pulverized coal particles and their evolution during pyrolysis: Insight from micro-Raman mapping technique, Powder Technol., 2023, vol. 420, p. 118385. https://doi.org/10.1016/j.powtec.2023.118385

    Article  CAS  Google Scholar 

  27. Yu, J., Guo, Q., Ding, L., Gong, Ya., and Yu, G., Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy, Fuel, 2020, vol. 270, p. 117603. https://doi.org/10.1016/j.fuel.2020.117603

    Article  CAS  Google Scholar 

  28. Van Doorn, J., Vuurman, M.A., Tromp, P.J.J., Stufkens, D.J., and Moulijn, J.A., Correlation between Raman spectroscopy data and the temperature-programmed oxidation reactivity of coals and carbons, Fuel Process. Technol., 1990, vol. 24, pp. 407–413. https://doi.org/10.1016/0378-3820(90)90080-C

    Article  CAS  Google Scholar 

  29. Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H., and Silva, S.R.P., Raman spectroscopy on amorphous carbon films, J. Appl. Phys., 1996, vol. 80, no. 1, pp. 440–447. https://doi.org/10.1063/1.362745

    Article  CAS  Google Scholar 

  30. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A., and Tascón, J.M.D., Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials, J. Mater. Chem., 1998, vol. 8, no. 12, pp. 2875–2879. https://doi.org/10.1039/a805841e

    Article  CAS  Google Scholar 

  31. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., and Pöschl, U., Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 2005, vol. 43, no. 8, pp. 1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  32. Chen, X. and Wang, D., Baseline correction of near-fault ground motion records based on the Hilbert spectral analysis, Soil Dyn. Earthquake Eng., 2022, vol. 154, p. 107162. https://doi.org/10.1016/j.soildyn.2022.107162

    Article  Google Scholar 

  33. Xu, J., Tang, H., Su, S., Liu, J., Xu, K., Qian, K., Wang, Yi., Zhou, Yi., Hu, S., Zhang, A., and Xiang, J., A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals, Appl. Energy, 2018, vol. 212, pp. 46–56. https://doi.org/10.1016/j.apenergy.2017.11.094

    Article  CAS  Google Scholar 

  34. H. L., Ultra-fine structure of coals and coke, Nature, 1944, vol. 153, no. 3893, pp. 697–697. https://doi.org/10.1038/153697b0

    Article  Google Scholar 

  35. Liu, X., Li, G., Zhao, H., Ye, Yo., Xie, R., Zhao, Z., Lei, Z., and Cui, P., Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process, Fuel, 2022, vol. 321, p. 124023. https://doi.org/10.1016/j.fuel.2022.124023

    Article  CAS  Google Scholar 

  36. Hou, L., Ma, W., Luo, X., Tao, S., Guan, P., and Liu, J., Chemical structure changes of lacustrine Type-II kerogen under semi-open pyrolysis as investigated by solid-state 13C NMR and FT-IR spectroscopy, Mar. Pet. Geol., 2020, vol. 116, p. 104348. https://doi.org/10.1016/j.marpetgeo.2020.104348

    Article  CAS  Google Scholar 

  37. Li, W. and Zhu, Ya., Structural characteristics of coal vitrinite during pyrolysis, Energy Fuels, 2014, vol. 28, no. 6, pp. 3645–3654. https://doi.org/10.1021/ef500300r

    Article  CAS  Google Scholar 

  38. Wang, Q., Hou, Yu., Wu, W., Liu, Q., and Liu, Z., The structural characteristics of kerogens in oil shale with different density grades, Fuel, 2018, vol. 219, pp. 151–158. https://doi.org/10.1016/j.fuel.2018.01.079

    Article  CAS  Google Scholar 

  39. Hou, L., Ma, W., Luo, X., Tao, S., Guan, P., and Liu, J., Chemical structure changes of lacustrine Type-II kerogen under semi-open pyrolysis as investigated by solid-state 13388 C NMR 389 and FT-IR spectroscopy, Mar. Petrol. Geol., 2020, vol. 116, p. 104348.

  40. Fletcher, T.H., Gillis, R., Adams, J., Hall, T., Mayne, C.L., Solum, M.S., and Pugmire, R.J., Characterization of macromolecular structure elements from a green river oil shale, II. Characterization of pyrolysis products by 13C NMR, GC/MS, and FTIR, Energy Fuels, 2014, vol. 28, no. 5, pp. 2959–2970. https://doi.org/10.1021/ef500095j

    Article  CAS  Google Scholar 

  41. Shin, S.-M., Park, J.-K., and Jung, S.-M., Changes of aromatic CH and aliphatic CH in in-situ FT-IR spectra of bituminous coals in the thermoplastic range, ISIJ Int., 2015, vol. 55, no. 8, pp. 1591–1598. https://doi.org/10.2355/isijinternational.isijint-2014-625

    Article  CAS  Google Scholar 

  42. Liu, X., Cui, P., Ling, Q., Zhao, Z., and Xie, R., A review on co-pyrolysis of coal and oil shale to produce coke, Front. Chem. Sci. Eng., 2020, vol. 14, no. 4, pp. 504–512. https://doi.org/10.1007/s11705-019-1850-z

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 22308006 and 22278001), the Natural Science Foundation of Anhui Provincial Education Department (no. KJ2021A0407), the Natural Science Foundation of Anhui Province (grant no. 2008085QB87), and Anhui Provincial Postdoctoral Science Foundation (no. 2021B538).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangchun Liu or Ping Cui.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kangshun Han, Fang, Y., Fang, S. et al. Insighti Upgrading Caking Property of Shenmu Long Flame Coal Using Low-temperature Slow Pyrolysis Treatment. Coke Chem. 67, 49–60 (2024). https://doi.org/10.3103/S1068364X24600118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X24600118

Keywords:

Navigation