Skip to main content
Log in

A review on co-pyrolysis of coal and oil shale to produce coke

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

It has become the top priority for coking industry to rationally use and enlarge coking coal resources because of the shortage of the resources. This review focuses on the potential utilization of oil shale (OS) as a feedstock for coal-blending coking, in which the initial and basic step is pyrolysis. However, OS has a high ash content. If such OS is directly used for coal-blending coking, the coke product will not meet market demand. Therefore, this review firstly summarizes separation and beneficiation techniques for organic matter in OS, and provides an overview on coal and OS pyrolysis through several viewpoints (e.g., pyrolysis process, phenomena, and products). Then the exploratory studies on co-pyrolysis of coal with OS, including co-pyrolysis phenomena and process mechanism, are discussed. Finally, co-pyrolysis of different ranks of coals with OS in terms of coal-blending coking, where further research deserves to be performed, is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui P, Qu K L, Ling Q, Cheng L Y, Cao Y P. Effects of coal moisture control and coal briquette technology on structure and reactivity of cokes. Coke and Chemistry, 2015, 58(5): 162–169

    Article  Google Scholar 

  2. Jiao H, Wang M, Kong J, Yan D, Guo J, Chang L. Contribution of single coal property to the changes of structure and reactivity of chars from blending coking. Journal of Analytical and Applied Pyrolysis, 2018, 134: 114–121

    Article  CAS  Google Scholar 

  3. Liu X, Ling Q, Zhao Z, Xie R, Yu D, Ke Q, Lei Z, Cui P. Effects of low-temperature rapid pyrolysis treatment on the improvement in caking property of a Chinese sub-bituminous coal. Journal of Analytical and Applied Pyrolysis, 2018, 135: 319–326

    Article  CAS  Google Scholar 

  4. Cui P, Wang A J, Wang Z L, Wang W W. Effect of boron trioxide on coke’s inner carbon solution loss reaction. Coke and Chemistry, 2013, 56(7): 253–257

    Article  Google Scholar 

  5. Niu Z, Liu G, Yin H, Zhou C. Devolatilization behaviour and pyrolysis kinetics of coking coal based on the evolution of functional groups. Journal of Analytical and Applied Pyrolysis, 2018, 134: 351–361

    Article  CAS  Google Scholar 

  6. Li L Y. Study on supply and demand situation and development countermeasures of coking coal industry in China. Coastal Engineering, 2018, 5(4): 141–148 (in Chinese)

    Google Scholar 

  7. Mao S Y, Ye Z C, Jiang L G, Ye L Q, Jiang M Q, She J X, Bian L H, Zhang L, Shi Y H, Chen Y Y, et al. 2018 China Statistical Yearbook. Beijing: China Statisticals Press, 2018, 193–212 (in Chinese)

    Google Scholar 

  8. Wei T J, Yan W D, Ma X J, Ma J M, Yu J W, Niu L, Deng F, Yan S H, Li E H, Li J Z, et al. 2018 China Mineral Resources. Beijing: Geological Publishing House, 2018, 1–14 (in Chinese)

    Google Scholar 

  9. Ru X, Cheng Z, Song L, Wang H, Li J. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen. Journal of Molecular Structure, 2012, 1030: 10–18

    Article  CAS  Google Scholar 

  10. Yen T F, Chilingarian G V. Developments in Petroleum Science 5 Oil Shale. Amsterdam: Elsevier, 1976, 29–37

    Google Scholar 

  11. Speight J G. Shale Oil Production Processes. Houston: Gulf Professional Publishing, 2012, 14

    Google Scholar 

  12. Huang Y, Zhang M, Lyu J, Yang H. Modeling study of combustion process of oil shale semicoke in a circulating fluidized bed boiler. Carbon Resources Conversion, 2018, 1(3): 273–278

    Article  Google Scholar 

  13. Zendehboudi S, Bahadori A. Shale Oil and Gas Handbook. Houston: Gulf Professional Publishing, 2015, 231–283

    Google Scholar 

  14. Liu Z J, Dong Q S, Ye S Q, Zhu J W, Guo W, Li D C. The situation of oil shale resources in China. Journal of Jilin University, 2006, 36 (6): 869–876 (Earth Science Edition)

    Google Scholar 

  15. Wang S, Jiang X, Han X, Tong J. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42 (1): 224–232

    Article  CAS  Google Scholar 

  16. Jiang X M, Han X X, Cui Z G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5): 772–777

    Article  Google Scholar 

  17. Wang Y. Study on co-pyrolysis characteristics ofcoal and oil shale. Dissertation for the Master’s Degree. Ma’anshan: Anhui Univeristity of Technology, 2018, 4–6 (in Chinese)

    Google Scholar 

  18. Fang C H, Cong L Z, Wang H Y, Zheng D W. Main problems in development and utilization of oil shale and the status of in-situ conversion process technology in China. In: 28th Oil Shale Symposium. Golden: Colorado School of Mines, 2008, 13–15

    Google Scholar 

  19. Zhang Z, Yang X, Jia H, Zhang H. Kerogen beneficiation from Longkou oil shale using gravity separation method. Energy & Fuels, 2016, 30(4): 2841–2845

    Article  CAS  Google Scholar 

  20. Tsai S C, Lumpkin R E. Oil shale beneficiation by froth flotation. Fuel, 1984, 63(4): 435–439

    Article  CAS  Google Scholar 

  21. Weiss M A, Klumpar I V, Ring T A, Peterson C R. Shale beneficiation and oil recovery from the concentrate. Engineering Costs and Production Economics, 1988, 13(2): 135–154

    Article  Google Scholar 

  22. Hasan M R, Reza M T. Hydrothermal deformation of Marcellus shale: effects of subcritical water temperature and holding time on shale porosity and surface morphology. Journal of Petroleum Science Engineering, 2019, 172: 383–390

    Article  CAS  Google Scholar 

  23. Reverchon E, Marco D I. Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids, 2006, 38(2): 146–166

    Article  CAS  Google Scholar 

  24. Kramer R, Levy M. Extraction of oil shales under supercritical conditions. Fuel, 1989, 68(6): 702–709

    Article  CAS  Google Scholar 

  25. Wu T, Xue Q, Li X, Tao Y, Jin Y, Ling C, Lu S. Extraction of kerogen from oil shale with supercritical carbon dioxide: Molecular dynamics simulations. Journal of Supercritical Fluids, 2016, 107: 499–506

    Article  CAS  Google Scholar 

  26. Alnawafleh H M, Fraige F Y. Shale oil solvent extraction of central Jordan El-lajjun oil shale. Journal of Analytical Sciences, Methods and Instrumentation, 2015: 35–43

    Article  CAS  Google Scholar 

  27. Nassef E, Soliman A, Al-Alla R A, Eltaweel Y. Experimental study on solvent extraction of Quseir oil shale in Egypt. Journal of Surface Engineered Materials and Advanced Technology, 2015, 5(3): 147–153

    Article  CAS  Google Scholar 

  28. Haddadin R A. Tetralin extraction of Jordan oil shale with ultrasonic irradiation. Fuel, 1974, 53(3): 182–185

    Article  CAS  Google Scholar 

  29. Deng S, Wang Z, Gu Q, Meng F, Li J, Wang H. Extracting hydrocarbons from Huadian oil shale by sub-critical water. Fuel Processing Technology, 2011, 92(5): 1062–1067

    Article  CAS  Google Scholar 

  30. Wang Z, Deng S, Gu Q, Cui X, Zhang Y, Wang H. Subcritical water extraction of Huadian oil shale under isothermal condition and pyrolysate analysis. Energy & Fuels, 2014, 28(4): 2305–2313

    Article  CAS  Google Scholar 

  31. Fedyaeva O N, Antipenko V R, Dubov D Y, Kruglyakova T V, Vostrikov A A. Non-isothermal conversion of the Kashpir sulfurrich oil shale in a supercritical water flow. Journal of Supercritical Fluids, 2016, 109: 157–165

    Article  CAS  Google Scholar 

  32. Knez Ž, Markočič E, Leitgeb M, Primožič M, Knez Hrnčič M, Skerget M. Industrial applications of supercritical fluids: A review. Energy, 2014, 77: 235–243

    Article  CAS  Google Scholar 

  33. Hu H, Zhang J, Guo S, Chen G. Extraction of Huadian oil shale with water in sub- and supercritical states. Fuel, 1999, 78(6): 645–651

    Article  CAS  Google Scholar 

  34. Deng S, Wang Z, Gao Y, Gu Q, Cui X, Wang H. Sub-critical water extraction of bitumen from Huadian oil shale lumps. Journal of Analytical and Applied Pyrolysis, 2012, 98: 151–158

    Article  CAS  Google Scholar 

  35. Yürüm Y, Dror Y, Levy M. Effect of acid dissolution on the mineral matrix and organic matter of Zefa EFE oil shale. Fuel Processing Technology, 1985, 11(1): 71–86

    Article  Google Scholar 

  36. Yan J, Jiang X, Han X, Liu J. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104: 307–317

    Article  CAS  Google Scholar 

  37. Breger I A. Organic Geochemistry. Oxford: Pergamon Press, 1963, 148–182

    Google Scholar 

  38. Zhang K, Li Y, Wang Z, Li Q, Whiddon R, He Y, Cen K. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures. Fuel, 2016, 185: 701–708

    Article  CAS  Google Scholar 

  39. Ma Y, Li S. The mechanism and kinetics ofoil shale pyrolysis in the presence of water. Carbon Resources Conversion, 2018, 1(2): 160–164

    Article  Google Scholar 

  40. Qian J, Wang J, Li S. Review of oil shale in world. Energy China, 2006, 28(8): 16–19 (in Chinese)

    Google Scholar 

  41. Külaots I, Goldfarb J L, Suuberg E M. Characterization of Chinese, American and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11): 3300–3306

    Article  CAS  Google Scholar 

  42. Han X, Kulaots I, Jiang X, Suuberg E M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126: 143–161

    Article  CAS  Google Scholar 

  43. Allred V D. Shale oil developments: Kinetics ofoil shale pyrolysis. Chemical Engineering Progress, 1966, 62(8): 50–60

    Google Scholar 

  44. Campbell J H, Gallegos G, Gregg M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel, 1980, 59(10): 727–732

    Article  CAS  Google Scholar 

  45. Campbell J H, Koskinas G J, Gallegos G, Gregg M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel, 1980, 59(10): 718–726

    Article  CAS  Google Scholar 

  46. Wu J, Liu Q, Wang R, He W, Shi L, Guo X, Chen Z, Ji L, Liu Z. Coke formation during thermal reaction of tar from pyrolysis of a subbituminous coal. Fuel Processing Technology, 2017, 155: 68–73

    Article  CAS  Google Scholar 

  47. Solomon P R, Serio M A, Suuberg E M. Coal pyrolysis: Experiments, kinetic rates and mechanisms. Progress in Energy and Combustion Science, 1992, 18(2): 133–220

    Article  CAS  Google Scholar 

  48. Geng C, Li S, Yue C, Ma Y. Pyrolysis characteristics of bituminous coal. Journal of the Energy Institute, 2016, 89(4): 725–730

    Article  CAS  Google Scholar 

  49. Lei Z, Yang D, Zhang Y H, Cui P. Constructions of coal and char molecular models based on the molecular simulation technology. Journal of Fuel Chemistry and Technology, 2017, 45(7): 769–779

    Article  CAS  Google Scholar 

  50. Solomon P R, Fletcher T H, Pugmire R J. Progress in coal pyrolysis. Fuel, 1993, 72(5): 587–597

    Article  CAS  Google Scholar 

  51. Gavalas G R. Coal Pyrolysis. Amsterdam: Elsevier, 1982, 39–72

    Google Scholar 

  52. Han X X, Jiang X M, Cui Z G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Applied Energy, 2009, 86(11): 2381–2385

    Article  CAS  Google Scholar 

  53. Wang J, Liang J, Wang Z, Lin W, Song W. Effects of temperature on the flash pyrolysis of oil shale. Coal Conversion, 2010, 33(1): 65–68 (in Chinese)

    Google Scholar 

  54. Dung N V. Yields and chemical characteristics of products from fluidized bed steam retorting of Condor and Stuart oil shales: Effect of pyrolysis temperature. Fuel, 1990, 69(3): 368–376

    Article  CAS  Google Scholar 

  55. Dung N V. Factors affecting product yields and oil quality during retorting of Stuart oil shale with recycled shale: A screening study. Fuel, 1995, 74(4): 623–627

    Article  CAS  Google Scholar 

  56. Jaber J O, Probert S D, Williams P T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9): 761–781

    Article  CAS  Google Scholar 

  57. Solomon P R, Carangelo R M, Horn E. The effects of pyrolysis conditions on Israeli oil shale properties. Fuel, 1986, 65(5): 650–662

    Article  CAS  Google Scholar 

  58. Olukcu N, Yanik J, Saglam M, Yuksel M. Liquefaction of beypazari oil shale by pyrolysis. Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 29–41

    Article  CAS  Google Scholar 

  59. Jaber J O, Probert S D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions. Fuel Processing Technology, 2000, 63(1): 57–70

    Article  CAS  Google Scholar 

  60. Ji X G, Wang N J, Pang J, Peng W W, Bian W. Study on carbonization of Huating oil shale. Clean Coal Technology, 1998, 4 (2): 34–36 (in Chinese)

    Google Scholar 

  61. Al-Harahsheh A, Al-Ayed O, Al-Harahsheh M D, Abu-El-Halawah R. Heating rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. Journal of Analytical and Applied Pyrolysis, 2010, 89(2): 239–243

    Article  CAS  Google Scholar 

  62. Al-Harahsheh M, Al-Ayed O, Robinson J, Kingman S, Al-Harahsheh A, Tarawneh K, Saeid A, Barranco R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Processing Technology, 2011, 92(9): 1805–1811

    Article  CAS  Google Scholar 

  63. Weitkamp A W, Gutberlet L C. Application of a microretort to problems in shade pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 1970, 9(3): 386–395

    Article  CAS  Google Scholar 

  64. Ahmad N, Williams P T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales. Journal of Analytical and Applied Pyrolysis, 1998, 46(1): 31–49

    Article  CAS  Google Scholar 

  65. Sun B, Wang Q, Jiang Q, Bai J, Sun J. Determination of oil yield of Huadian oil shales by fischer assay analysis. Journal of Northeast Dianli University Natural Science Edition, 2006, 26(1): 13–16 (in Chinese)

    Google Scholar 

  66. Hanna J, Lamont W E. Effect of sulphur and particle size on Fischer assay oil yields from oil shale. In: Eastern Oil Shale Symposium. Lexington: Kentucky Energy Cabinet, 1987: 343

    Google Scholar 

  67. Regtop R A, Ellis J, Crisp P T, Ekstrom A, Fookes C J R. Pyrolysis of model compounds on spent oil shales, minerals and charcoal: Implications for shale oil composition. Fuel, 1985, 64(12): 1640–1646

    Article  CAS  Google Scholar 

  68. Borrego A G, Prado J G, Fuente E, Guillén M D, Blanco C G. Pyrolytic behaviour of Spanish oil shales and their kerogens. Journal of Analytical and Applied Pyrolysis, 2000, 56(1): 1–21

    Article  CAS  Google Scholar 

  69. Al-Harahsheh A, Al-Harahsheh M, Al-Otoom A, Allawzi M. Effect of demineralization of El-lajjun Jordanian oil shale on oil yield. Fuel Processing Technology, 2009, 90(6): 818–824

    Article  CAS  Google Scholar 

  70. Williams P T, Ahmad N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Applied Energy, 2000, 66(2): 113–133

    Article  CAS  Google Scholar 

  71. Wu R C, Xu S P, Xu G. Thermal pretreatment characteristics of coal and oil shale and its effect on pyrolysis products. CIESC Journal, 2017, 68(10): 3892–3899

    CAS  Google Scholar 

  72. Sun Y, Bai F, Liu B, Liu Y, Guo M, Guo W, Wang Q, Lü X, Yang F, Yang Y. Characterization of the oil shale products derived via topochemical reaction method. Fuel, 2014, 115: 338–346

    Article  CAS  Google Scholar 

  73. Rokni E, Panahi A, Ren X, Levendis Y A. Curtailing the generation of sulfur dioxide and nitrogen oxide emissions by blending and oxycombustion of coals. Fuel, 2016, 181: 772–784

    Article  CAS  Google Scholar 

  74. Abnisa F, Daud W M. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 2014, 87: 71–85

    Article  CAS  Google Scholar 

  75. Li S, Ma X, Liu G, Guo M. A TG-FTIR investigation to the co-pyrolysis of oil shale with coal. Journal of Analytical and Applied Pyrolysis, 2016, 120: 540–548

    Article  CAS  Google Scholar 

  76. He D, Guan J, Hu H Q, Zhang Q M. Pyrolysis and co-pyrolysis of Chinese Longkou oil shale and Mongolian Huolinhe lignite. Oil Shale, 2015, 32(2): 151–159

    Article  CAS  Google Scholar 

  77. Miao Z, Wu G, Li P, Meng X, Zheng Z. Investigation into co-pyrolysis characteristics of oil shale and coal. International Journal of Mining Science and Technology, 2012, 22(2): 245–249

    Article  CAS  Google Scholar 

  78. Li G. Characterization of intermediates and radicals in coal pyrolysis and investigation on reaction mechanism. Dissertation for the Doctoral Degree. Dalian: Dalian University of Technology, 2015, 2 (in Chinese)

    Google Scholar 

  79. Suuberg E M, Peters W A, Howard J B. Product compositions in rapid hydropyrolysis of coal. Fuel, 1980, 59(6): 405–412

    Article  CAS  Google Scholar 

  80. Bozkurt P A, Tosun O, Canel M. The synergistic effect of co-pyrolysis of oil shale and low density polyethylene mixtures and characterization of pyrolysis liquid. Journal of the Energy Institute, 2017, 90(3): 355–362

    Article  CAS  Google Scholar 

  81. He D. Pyrolysis and copyrolysis of oil shale and coal. Dissertation for the Master’s Degree. Dalian: Dalian University of Technology, 2006, 38–59 (in Chinese)

    Google Scholar 

  82. Wang Y. Study on pyrolysis and co-pyrolysis characteristics of Tongchuan oil shale. Dissertation for the Master’s Degree. Xi’an: Northwest University, 2014, 56–58 (in Chinese)

    Google Scholar 

  83. Shi Y. Investigation into co-pyrolysis characteristics of coal with Huandian oil shale. Dissertation for the Master’s Degree. Ma’anshan: Anhui University of Technology, 2016, 33–38 (in Chinese)

    Google Scholar 

  84. Song Y H, She J M, Lian X Z, Zhang Q L, Zhou J. Pyrolyssi of low metamorphic coal and oil shale by microwave irradiation. Coal Conversion, 2012, 35(2): 22–26 (in Chinese)

    CAS  Google Scholar 

  85. Shi Y, Lai D, Chen Z, Gao S, Cui P, Xu G. Co-pyrolysis characteristics of Shenmu bituminous coal and Huadian oil shale. Chinese Journal of Process Engineering, 2016, 16(4): 638–634 (in Chinese)

    Google Scholar 

  86. Jakab E, Blazsó M, Faix O. Thermal decomposition of mixtures of vinyl polymers and lignocellulosic materials. Journal of Analytical and Applied Pyrolysis, 2001, 58–59: 49–62

    Article  Google Scholar 

  87. Jakab E, Várhegyi G, Faix O. Thermal decomposition of polypropylene in the presence of wood-derived materials. Journal of Analytical and Applied Pyrolysis, 2000, 56(2): 273–285

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21776002), Natural Science Foundation of Anhui Provincial Education Department (Nos. KJ2016A097, KJ2017A056, and KJ2019A0076), Innovation Project of Overseas People of Anhui Province, Science and Technology Major Projects of Anhui Province (No. 17030901086), and Natural Science Foundation of Anhui Province (No. 1708085QB33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cui, P., Ling, Q. et al. A review on co-pyrolysis of coal and oil shale to produce coke. Front. Chem. Sci. Eng. 14, 504–512 (2020). https://doi.org/10.1007/s11705-019-1850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1850-z

Keywords

Navigation