Skip to main content
Log in

Calculation of Biexiton Binding Energy in a Cylindrical Quantum Dot with a Mors Potential

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

This article considers biexciton states in a cylindrical quantum dot in the strong dimensional quantization regime and shows the stability of the biexciton. A cylindrical quantum dot is limited in the axial direction by the parabolic potential, but in the radial direction – by the Morse potential. The dependences of the energy of the ground state of the biexciton on the geometric parameters of the quantum dot are calculated using the Heisenberg uncertainty principle. The dependence of the binding energy of the biexciton on the frequency of the parabolic potential is plotted. The lifetime of an exciton and biexciton in a cylindrical quantum dot is estimated for various parameters of the quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Harrison, P., Quantum Wells, Wires and Dots. Wiley, 2005.

    Book  Google Scholar 

  2. Rogach, A.L., Semiconductor Nanocrystal Quantum Dots., Heidelberg: Springer, 2008.

    Book  Google Scholar 

  3. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., J. Contemp. Phys., 2013, vol. 48, p. 32.

    Article  Google Scholar 

  4. Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Optics Communications, 2016, vol. 371, p. 138.

    Article  ADS  Google Scholar 

  5. Hayrapetyan, D.B., Ohanyan, G.L., Baghdasaryan, D.A., Sarkisyan, H.A., Baskoutas, S., and Kazaryan. E.M., Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 95, p. 27.

    Article  ADS  Google Scholar 

  6. Baghdasaryan, D.A., Hayrapetyan, D.B., Kazaryan, E.M., and Sarkisyan, H.A., Physica E: Low-dimensional Systems and Nanostructures, 2018, vol. 101, p. 1.

    Article  ADS  Google Scholar 

  7. Jacak, L., Hawrylak, P., and Wojs, A., Quantum dots, 2013.

  8. Reimann, S.M. and Manninen, M., Electronic structure of quantum dots, 2002.

  9. Kouwenhoven, L. and Marcus. C., Phys. World, 1998, vol. 11, p. 35.

    Article  Google Scholar 

  10. Woggon, U., Springer Tracts Mod. Phys., 1997, vol. 136, p. 103.

    Article  Google Scholar 

  11. Chakraborty, T., Quantum Dots: A survey of the properties of artificial atoms. The Netherlands, Amsterdam: Elsevier, 1999.

    Book  Google Scholar 

  12. Yoffe, A.D., Advances in Physics, 2001, vol. 50, p. 1.

    Article  ADS  Google Scholar 

  13. Lalitha, D., Peter, A.J., and Lee, C.W., International Journal of Modern Physics B, 2014, vol. 28, p. 27.

    Article  Google Scholar 

  14. Hayrapetyan, D.B., Kazaryan, E.M., Kotanjyan, T.V., and Tevosyan, H.K., Superlattices and Microstructures, 2015, vol. 78, p. 40.

    Article  ADS  Google Scholar 

  15. Pokutnyi, S.I., Kulchin, Y.N., Dzyuba, V.P., and Hayrapetyan, D.B., Crystals, 2018, vol. 8, p. 148.

    Article  Google Scholar 

  16. Bleyan, Y.Y. and Hayrapetyan, D.B., J. Contemp. Phys., 2019, vol. 54, p. 153.

    Article  Google Scholar 

  17. Patton, B., Langbein, W., and Woggon, U., Phys. Rev. B, 2003, vol. 68, p. 125316.

    Article  ADS  Google Scholar 

  18. Suris, R.A., Optical Properties of 2D Systems with Interacting Electrons, NATO Science ebook Series. Dordrecht: Springer, 2003.

  19. Zhang, C., Wang, H., Chan, W., Manolatou, C., and Rana, F., Phys. Rev. B, 2014, vol. 89, p. 205436.

    Article  ADS  Google Scholar 

  20. Takagahara, T., Physical Review B, 1989, vol. 39, p. 10206.

    Article  ADS  Google Scholar 

  21. Baskoutas, S. and Terzis, A.F., Journal of Computational and Theoretical Nanoscience, 2008, vol. 5, p. 88.

    Google Scholar 

  22. Baskoutas, S. and Terzis, A.F., Journal of applied physics, 2005, vol. 98, p. 044309.

    Article  ADS  Google Scholar 

  23. Hayrapetyan, D.B., Bleyan, Y.Y., Baghdasaryan, D.A., Sarkisyan, H.A., Baskoutas, S., and Kazaryan, E.M., Physica E: Low-dimensional Systems and Nanostructures, 2019, vol. 105 p. 47.

    Article  ADS  Google Scholar 

  24. Narvaez, G.A., Bester, G., and Zunger, A., Phys. Rev. B, 2005, vol. 72, p. 041307.

    Article  ADS  Google Scholar 

  25. Fonoberov, V.A. and Balandin, A.A., Appl. Phys. Lett., 2004, vol. 85, p. 5971.

    Article  ADS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the State Science Committee of the Republic of Armenia within the framework of the basic scientific project No. 10-2/I-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ts. Kharatyan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharatyan, G.T., Gevorkyan, G.S. & Mantashyan, P.A. Calculation of Biexiton Binding Energy in a Cylindrical Quantum Dot with a Mors Potential. J. Contemp. Phys. 56, 214–220 (2021). https://doi.org/10.3103/S1068337221030142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221030142

Keywords:

Navigation