Skip to main content

Optical Absorption and Photoluminescence of Cylindrical Quantum Dot with Modified Pöschl-Teller and Morse Confining Potentials

  • Conference paper
  • First Online:
International Youth Conference on Electronics, Telecommunications and Information Technologies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 255))

  • 670 Accesses

Abstract

The investigation of absorption spectra and photoluminescence of the cylindrical quantum dot with two models of confinement potentials, namely modified Pöschl-Teller and Morse, in axial direction have been considered in the regime of strong quantization. The interband optical transitions from heavy and light hole states to electron states have been observed for diagonal and off-diagonal transitions. Selection rules and oscillator strengths for these transitions have been obtained for different values of potentials parameters. The absorption spectra for above mentioned transitions have been plotted. At the same time, the photoluminescence spectra have been constructed depending on the incident light energy. The exciton radiative lifetime in the cylindrical quantum dot with different types of confinement potentials have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, New York, 2016)

    Book  Google Scholar 

  2. T. Chakraborty, Quantum Dots: A Survey of the Properties of Artificial Atoms (Elsevier, Amsterdam, 1999)

    Book  Google Scholar 

  3. J.A. Barker, E.P. O’Reilly, The influence of inter-diffusion on electron states in quantum dots. Phys. E: Low-Dimensional Syst. Nanostruct. 4(3), 231 (1999)

    Article  ADS  Google Scholar 

  4. W. Que, Excitons in quantum dots with parabolic confinement. Phys. Rev. B 45(19), 11036 (1992)

    Article  ADS  Google Scholar 

  5. C. Bose, C.K. Sarkar, Effect of a parabolic potential on the impurity binding energy in spherical quantum dots. Phys. B: Condens. Matter 253(3–4), 238 (1998)

    Article  ADS  Google Scholar 

  6. D.B. Hayrapetyan, T.V. Kotanjyan, H.K. Tevosyan, E.M. Kazaryan, Effects of hydrostatic pressure on the donor impurity in a cylindrical quantum dot with morse confining potential. Radiat. Eff. Defects Solids 171(11–12), 916 (2016)

    Article  ADS  Google Scholar 

  7. D.B. Hayrapetyan, E.M. Kazaryan, H.K. Tevosyan, Optical properties of spherical quantum dot with modified Pöschl-Teller potential. Superlattices Microstruct. 64, 204 (2013)

    Article  ADS  Google Scholar 

  8. A. Dehyar, G. Rezaei, A. Zamani, Electronic structure of a spherical quantum dot: effects of the Kratzer potential, hydrogenic impurity, external electric and magnetic fields. Phys. E: Low-Dimensional Syst. Nanostruct. 84, 175 (2016)

    Article  ADS  Google Scholar 

  9. S. Jindal, S.M. Giripunje, Potential effect of CuInS 2/ZnS core-shell quantum dots on P3HT/PEDOT: PSS heterostructure based solar cell. Opt. Laser Technol. 103, 212 (2018)

    Article  ADS  Google Scholar 

  10. A. Gharaati, R. Khorda, A new confinement potential in spherical quantum dots: modified Gaussian potential. Superlattices Microstruct. 48(3), 276 (2010)

    Article  ADS  Google Scholar 

  11. D.B. Hayrapetyan, E.M. Kazaryan, T.V. Kotanjyan, H.K. Tevosyan, Exciton states and interband absorption of cylindrical quantum dot with Morse confining potential. Superlattices Microstruct. 78, 40 (2015)

    Article  ADS  Google Scholar 

  12. M.C. Onyeaju, J.O.A. Idiodi, A.N. Ikot, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: generalized Hulthén potential. Few-Body Syst. 57(9), 793 (2016)

    Article  ADS  Google Scholar 

  13. W. Xie, A study of an exciton in a quantum dot with Woods-Saxon potential. Superlattices Microstruct. 46(4), 693 (2009)

    Article  ADS  Google Scholar 

  14. M.C. Onyeaju, A.N. Ikot, C.A. Onate, E. Aghemenloh, H. Hassanabadi, Electronic states in core/shell GaN/Y x Ga 1–x N quantum well (QW) with the modified Pöschl-Teller plus Woods-Saxon potential in the presence of electric field. Int. J. Mod. Phys. B 31(15), 1750119 (2017)

    Article  ADS  Google Scholar 

  15. G. Ovando, J.J. Peña, J. Morales, J. López-Bonilla, Position-Dependent mass Schrödinger equation for the morse potential. J. Phys: Conf. Ser. 792(1), 012037 (2017)

    Google Scholar 

  16. D.B. Hayrapetyan, A.S. Achoyan, E.M. Kazaryan, H.K. Tevosyan, Electronic states in a cylindrical quantum dot with the modified Pöschl-Teller potential in the presence of external magnetic field. J. Contemp. Phys. 48(6), 285 (2013)

    Article  Google Scholar 

  17. M.E. Mora-Ramos, M.G. Barseghyan, C.A. Duque, Nonlinear optical properties of a Pöschl-Teller quantum well under electric and magnetic fields. Phys. E: Low-Dimensional Syst. Nanostruct. 43(1), 338 (2010)

    Article  ADS  Google Scholar 

  18. D.B. Hayrapetyan, T.V. Kotanjyan, H.K. Tevosyan, Modeling of confinement potential for cylindrical quantum dot. J. Contemp. Phys. 49(6), 272 (2014)

    Article  Google Scholar 

  19. X. Wen-Fang, Singlet-Triplet transitions of a Pöschl-Teller quantum dot. Commun. Theor. Phys. 46(6), 1101 (2006)

    Article  ADS  Google Scholar 

  20. D.B. Hayrapetyan, E.M. Kazaryan, H.K. Tevosyan, Impurity states in a cylindrical quantum dot with the modified Pöschl-Teller potential. J. Contemp. Phys. 49(3), 119 (2014)

    Article  Google Scholar 

  21. V.U. Unal, E. Aksahin, O. Aytekin, Electric field effect on the refractive index changes in a Modified-Pöschl-Teller quantum well. Phys. E: Low-Dimensional Syst. Nanostruct. 47, 103 (2013)

    Article  ADS  Google Scholar 

  22. S. Ghajarpour-Nobandegani, M.J. Karimi, Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot. Opt. Mater. 82, 75 (2018)

    Article  ADS  Google Scholar 

  23. D.B. Hayrapetyan, E.M. Kazaryan, H.K. Tevosyan, Direct interband light absorption in the cylindrical quantum dot with modified Pöschl-Teller potential. Phys. E: Low-Dimensional Syst. Nanostruct. 46, 274 (2012)

    Article  ADS  Google Scholar 

  24. Y. Wu, X. Yan, X. Zhang, X. Ren, Light absorption properties of a nanowire/quantum-dot hybrid nanostructure array. Opt. Commun. 420, 104 (2018)

    Article  ADS  Google Scholar 

  25. I. Ramiro et al., Analysis of the intermediate-band absorption properties of type-II GaSb/GaAs quantum-dot photovoltaics. Phys. Rev. B 96(12), 125422 (2017)

    Article  ADS  Google Scholar 

  26. I.A. Aleksandrov, K.S. Zhuravlev, V.G. Mansurov, Influence of defects on the photoluminescence kinetics in GaN/AlN quantum-dot structures. Semiconductors 50(2), 191 (2016)

    Article  ADS  Google Scholar 

  27. Z. Bai, L. Hao, Z. Zhang, S. Qin, Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy. Funct. Mater. Lett. 9(03), 1650040 (2016)

    Article  ADS  Google Scholar 

  28. L. Su et al., Abnormal photoluminescence for GaAs/Al0. 2Ga0. 8As quantum dot-ring hybrid nanostructure grown by droplet epitaxy. J. Lumin. 195, 187 (2018)

    Article  Google Scholar 

  29. F. Albert et al., Quantum efficiency and oscillator strength of site-controlled InAs quantum dots. Appl. Phys. Lett. 96(15), 151102 (2010)

    Article  ADS  Google Scholar 

  30. M. Msahli, H. Saidi, A.B. Ahmed, S. Ridene, H. Bouchriha, Oscillator strengths for the intersubband transitions in GaAs/InGa1–xAs quantum wells and its strain dependence. Optik-Int. J. Light Electr. Opt. 127(11), 4903 (2016)

    Article  Google Scholar 

  31. Al.L. Efros, Al. Efros, Interband absorption of light in a semiconductor sphere. Semiconductors 16(7), 772 (1982)

    Google Scholar 

  32. N. Ha et al., Size-dependent line broadening in the emission spectra of single GaAs quantum dots: impact of surface charge on spectral diffusion. Phys. Rev. B 92(7), 075306 (2015)

    Article  ADS  Google Scholar 

  33. R. Bhattacharya, B. Pal, B. Bansal, On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation. Appl. Phys. Lett. 100(22), 222103 (2012)

    Article  ADS  Google Scholar 

  34. V.A. Fonoberov, A.A. Balandin, Origin of ultraviolet photoluminescence in ZnO quantum dots: confined excitons versus surface-bound impurity exciton complexes. Appl. Phys. Lett. 85(24), 5971 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran V. Kotanjyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotanjyan, T.V., Tevosyan, H.K. (2021). Optical Absorption and Photoluminescence of Cylindrical Quantum Dot with Modified Pöschl-Teller and Morse Confining Potentials. In: Velichko, E., Vinnichenko, M., Kapralova, V., Koucheryavy, Y. (eds) International Youth Conference on Electronics, Telecommunications and Information Technologies. Springer Proceedings in Physics, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-58868-7_8

Download citation

Publish with us

Policies and ethics