Skip to main content
Log in

Calculations of Higher Order Quantum Chromodynamics Corrections

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Our article is devoted to the computation of two three-loop diagrams that contribute to the decay \(b \to s\gamma \) at \(\alpha _{s}^{2}\) order. We use differential equations for master integrals (MI) to compute these diagrams for an arbitrary c-quark mass. The program CANONICA is used to obtain differential equations on a canonical basis. Using them, it is possible to solve the differential equations and obtain expressions for MI-s in terms of GPL functions. We hope that the same method can be used for other three-loop diagrams which contribute to the decay \(b \to s\gamma \) at order \(\alpha _{s}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Asatrian, H.M., Misiak, M., et al. Phys. Rev. Lett., 2015, vol. 114, p. 221801.

    Article  ADS  Google Scholar 

  2. Asatrian, H.M., Misiak, M., et al. Phys. Rev. Lett., 2007, vol. 98, p. 022002.

    Article  ADS  Google Scholar 

  3. Greub, C., Hurth, T., and Wyler, D., Phys. Rev. D, 1996, vol. 54, p. 3350.

    Article  ADS  Google Scholar 

  4. Asatrian, H.M. et al. JHEP, 2020, vol. 04, p. 012.

  5. Hovhannisyan, A., Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2002, vol. 37, p. 206.

    Google Scholar 

  6. Jamin, M. and Lautenbacher, M., Comput. Phys. Commun., 1993, vol. 74, p. 265.

    Article  ADS  Google Scholar 

  7. Laporta, S., Int. J. Mod. Phys. A, 2000, vol. 15, p. 5087.

    ADS  MathSciNet  Google Scholar 

  8. Anastasiou, C. and Lazopoulos, A., JHEP, 2004, vol. 7, p. 046.

  9. Smirnov, A., JHEP, 2008, vol. 10, p. 107.

    Article  ADS  Google Scholar 

  10. Lee, R., J. Phys. Conf. Ser., 2014, vol. 523, p. 012059.

    Article  Google Scholar 

  11. Maierhöfer, P., Usovitsch, J., and Uwer, P., Phys. Commun., 2018, vol. 230, p. 99.

    Article  ADS  Google Scholar 

  12. Henn, J., Phys. Rev. Lett., 2013, vol. 110, p. 251601.

    Article  ADS  Google Scholar 

  13. Meyer, C., Comput. Phys. Commun., 2018, vol. 222, p. 295.

    Article  ADS  Google Scholar 

  14. Vollinga, J. and Weinzierl, S., Comput. Phys. Commun., 2005, vol. 167, p. 177.

    Article  ADS  Google Scholar 

  15. Carter, J. and Heinrich, G., Comput. Phys. Commun., 2011, vol. 182, p. 1566.

    Article  ADS  Google Scholar 

  16. Vollinga, J., Nucl. Instrum. Methods Phys. Res., 2006, vol. 559, p. 282

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Asatryan.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by V. Musakhanyan

APPENDIX

APPENDIX

Below is the sum of the two diagrams in Fig. 1 as a series from \(\varepsilon \) to \({{\varepsilon }^{{ - 1}}}\). The expression for \({{\varepsilon }^{0}}\) is too long to be reproduced here. If necessary, it can be provided by the authors.

$$\begin{gathered} {{S}_{m}} = \frac{{10}}{{3{{\varepsilon }^{2}}}} + \frac{1}{\varepsilon }( - \frac{{23G( - 1,x)}}{{{{x}^{3}}}} + \frac{{23G(1,x)}}{{{{x}^{3}}}} + \frac{{13G( - 1,x)}}{x} - 10G( - 1,x) + 20G(0,x) \hfill \\ \quad \quad \; - \frac{{13G(1,x)}}{x} - 10G(1,x) + \frac{{39}}{{{{x}^{2}}}} + 10i\pi + \frac{8}{3} + 20\log (2) \hfill \\ \quad \quad \; + \frac{{({{x}^{2}} - 1)(13{{x}^{2}} - 1)}}{{2{{x}^{4}}}}( - G( - 1, - 1,x) + G( - 1,1,x) + G(1, - 1,x) - G(1,1,x)) \hfill \\ \quad \quad \; + \frac{{2\left( {5{{x}^{4}} - 6{{x}^{2}} + 1} \right)}}{{{{x}^{4}}}}( - G( - 1, - 1, - 1,x) + G( - 1, - 1,1,x) + G( - 1,1, - 1,x) \hfill \\ \quad \quad \; - G( - 1,1,1,x) + 2G(0, - 1, - 1,x) - 2{\text{ }}G(0, - 1,1,x) - 2G(0,1, - 1,x) \hfill \\ \quad \quad \; + 2G(0,1,1,x) - G(1, - 1, - 1,x) + G(1, - 1,1,x) + G(1,1, - 1,x) - G(1,1,1,x)) \hfill \\ \quad \quad \; + \frac{{2\left( {3{{x}^{4}} - 4{{x}^{2}} + 1} \right)}}{{{{x}^{4}}}}(G( - 1, - 1, - 1, - 1,x) - G( - 1, - 1, - 1,1,x) - G( - 1, - 1,1, - 1,x) \hfill \\ \quad \quad \; + G( - 1, - 1,1,1,x) - 2{\text{ }}G( - 1,0, - 1, - 1,x) + 2{\text{ }}G( - 1,0, - 1,1,x) + 2{\text{ }}G( - 1,0,1, - 1,x) \hfill \\ \quad \quad \; - 2G( - 1,0,1,1,x) + G( - 1,1, - 1, - 1,x) - G( - 1,1, - 1,1,x) - G( - 1,1,1, - 1,x) \hfill \\ \quad \quad \; + G( - 1,1,1,1,x) - 2{\text{ }}G(0, - 1, - 1, - 1,x) + 2G(0, - 1, - 1,1,x) + 2{\text{ }}G(0, - 1,1, - 1,x) \hfill \\ \quad \quad \; - 2{\text{ }}G(0, - 1,1,1,x) + 4{\text{ }}G(0,0, - 1, - 1,x) - 4{\text{ }}G(0,0, - 1,1,x) - 4{\text{ }}G(0,0,1, - 1,x) \hfill \\ \quad \quad \; + 4G(0,0,1,1,x) - 2G(0,1, - 1, - 1,x) + 2G(0,1, - 1,1,x) + 2G(0,1,1, - 1,x) \hfill \\ \quad \quad \; - 2{\text{ }}G(0,1,1,1,x) + G(1, - 1, - 1, - 1,x) - G(1, - 1, - 1,1,x) - G(1, - 1,1, - 1,x) \hfill \\ \quad \quad \; + G(1, - 1,1,1,x) - 2{\text{ }}G(1,0, - 1, - 1,x) + 2G(1,0, - 1,1,x) + 2{\text{ }}G(1,0,1, - 1,x) \hfill \\ \quad \quad \; - 2G(1,0,1,1,x) + G(1,1, - 1, - 1,x) - G(1,1, - 1,1,x) - G(1,1,1, - 1,x) + G(1,1,1,1,x))). \hfill \\ \end{gathered} $$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asatryan, H.H., Asatrian, H.M. Calculations of Higher Order Quantum Chromodynamics Corrections. J. Contemp. Phys. 56, 177–183 (2021). https://doi.org/10.3103/S1068337221030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337221030063

Keywords:

Navigation