Skip to main content
Log in

Estimation of the Thermal Expansion Coefficient of Graphene in the Temperature Range of 100–700°K

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

In this paper, by an analogy with the 3D-systems, and because of the analysis of the dimensionalities of the variables involved, an expression is derived in the quasi-harmonic approximation that allows one to estimate the linear thermal expansion coefficient for a single-layered graphene (which represents the 2D-system) at the temperatures close to the room temperature. It is shown that compared to the other methods to evaluate the thermal expansion coefficient of graphene at the room temperatures (the molecular dynamics method or the method of approximation with the aid of nonequilibrium Green’s function, for which the obtained results differ from experimentally measured values at least by 7%), the accuracy of the value obtained by the suggested expression is 5 times higher (the discrepancy from the measured values figures up to 1.4%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curl, R.F., Rev. Mod. Phys., 1997, vol. 69, p. 691.

    Article  ADS  Google Scholar 

  2. Iijima, S., Nature, 1991, vol. 354, p. 56.

    Article  ADS  Google Scholar 

  3. Morozov, S.V., Novoselov, K.S., and Geim, A.K., Physics-Uspekhi, 2008, vol. 51(7), p. 744.

    Article  ADS  Google Scholar 

  4. Mounet, N. and Marzari, N., Phys. Rev. B, 2005, vol. 71, p. 205214.

    Article  ADS  Google Scholar 

  5. Margaryan, N., Kokanyan, N., and Kokanyan, E., Journal of Saudi Chemical Society, 2018, vol. 85, p. 30502.

    Google Scholar 

  6. Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Phys. Usp., 2011, vol. 54(3), p. 227.

    Article  ADS  Google Scholar 

  7. Zakharchenko, K.V., Katsnelson, M.I., and Fasolino, A., Phys. Rev. Lett., 2009, vol. 102, p. 046808.

    Article  ADS  Google Scholar 

  8. Jiang, J.W., Wang, J.S., and Li, B., Phys. Rev. B., 2009, vol. 80, p. 205429.

    Article  ADS  Google Scholar 

  9. Pozzo, M., Alfe, D., Lacovig, P., Hofmann, P., Lizzit, S., and Baraldi, A., Phys. Rev. Lett., 2011, vol. 106, p. 135501.

    Article  ADS  Google Scholar 

  10. Bao, W., Miao, F., Chen, Z., Zhang, H., Jang, W., Dames, C., and Lau, N., Nat. Nanotechnol., 2009, vol. 4(9), p. 562.

    Article  ADS  Google Scholar 

  11. Davydov, S.Y. and Sabirova, G., Technical Physics Letters, 2011, vol. 37, p. 515.

    Article  ADS  Google Scholar 

  12. Landau, L.D. and Lifshitz, E.M., Statistical Physics, 3rd Edition, Elsevier, 1980.

    MATH  Google Scholar 

  13. Yeganyan, A.V., Kuzanyan, A.S., and Stathopoulos, V.N., J. Contemp. Phys. (Armenian Ac. Sci.), 2016, vol. 51, p. 61.

    Article  Google Scholar 

  14. Yeganyan, A.V., Kokanyan, E.P., Hovhannesyan, K.L., Butaeva, T.I., and Ovsepyan, L.E., J. Contemp. Phys. (Armenian Ac. Sci.), 2018, vol. 53, p. 152.

    Article  ADS  Google Scholar 

  15. Rech, S., Jantoljak, H., and Thomsen, C., Phys. Rev., V. 61, p.13389, (2000).

    Article  Google Scholar 

  16. Brazier, R.A., Kochayev, A.I., and Meftahundinov, R.M., Grafeny i ikh fizicheskiye svoystva (Graphenes and their physical properties), UlGTU, 2016.

    Google Scholar 

  17. Xie, Y., Xu, Z., Cheng, Z., Hashemi, N., Deng, C., and Wang, X., Nanoscale, 2015, vol. 7, p. 10101.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yeganyan.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2019, Vol. 54, No. 3, pp. 405–412.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeganyan, A.V., Kokanyan, E.P., Kokanyan, N.E. et al. Estimation of the Thermal Expansion Coefficient of Graphene in the Temperature Range of 100–700°K. J. Contemp. Phys. 54, 302–307 (2019). https://doi.org/10.3103/S1068337219030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337219030113

Keywords

Navigation