Skip to main content
Log in

Tight-Binding Investigation of Thermal Conductivity of Graphene and Few-Layer Graphene Systems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivities of few-layer graphene per stratum are analytically calculated and compared with the single-layer value within the tight-binding Hamiltonian model and Green’s function formalism. The results show a decrease in the intra-plane thermal conductivity by increasing the number of layers. Moreover, the change in its magnitude varies less as the number of layers exceeds two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. B. Deo, S.N. Behkra, Phys. Rev. 141, 738 (1956)

    Article  ADS  Google Scholar 

  2. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)

    Google Scholar 

  3. M. Jonson, G.D. Mahan, Phys. Rev. B 21, 4223 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  4. G.D. Mahan, Phys. Rev. B 56, 11833 (1997)

    Article  ADS  Google Scholar 

  5. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, R2514 (1999)

    Article  ADS  Google Scholar 

  6. J. Che, T. Cagin, W.A. Goddard, Nanotechnology 11, 65 (2000)

    Article  ADS  Google Scholar 

  7. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Phys. Rev. B 66, 165440 (2002)

    Article  ADS  Google Scholar 

  8. A.A. Balandin, Nature Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  9. H. Im, J. Kim, Carbon 50, 5429 (2012)

    Article  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  11. A.K. Geim, K.S. Novoselov, Nature Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  12. N.M.R. Peres, A.H.C. Neto, F. Guinea, Phys. Rev. B 73, 195411 (2006)

    Article  ADS  Google Scholar 

  13. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Appl. Phys. Lett. 95, 151911 (2008)

    Google Scholar 

  14. Z. Aksamija, I. Knezevic, Appl. Phys. Lett. 98, 141919 (2011)

    Article  ADS  Google Scholar 

  15. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  16. H.K. Min, A.H. McDonald, Phys. Rev. Lett. 103, 067402 (2009)

    Article  ADS  Google Scholar 

  17. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  18. J.C. Charlier, X. Gonze, J.P. Michenaud, Phys. Rev. B 43, 4579 (1991)

    Article  ADS  Google Scholar 

  19. J.C. Charlier, J.P. Michenaud, X. Gonze, Phys. Rev. B 46, 4531 (1992)

    Article  ADS  Google Scholar 

  20. J.C. Charlier, J.P. Michenaud, P. Lambin, Phys. Rev. B 46, 4540 (1992)

    Article  ADS  Google Scholar 

  21. J.C. Charlier, X. Gonze, J.P. Michenaud, Carbon 32, 289 (1994)

    Article  Google Scholar 

  22. D.L. Nika, S. Ghosh, E.P. Pokatilov, A.A. Balandin, Appl. Phys. Lett. 94, 203103 (2009)

    Article  ADS  Google Scholar 

  23. S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, A.A. Balandin, Nature Mater. 9, 555 (2010)

    Article  ADS  Google Scholar 

  24. D.L. Nika, E.P. Pokatilov, A.A. Balandin, Phys. Status Solidi B 248, 2609 (2011)

    Article  ADS  Google Scholar 

  25. D.L. Nika, A.S. Askerov, A.A. Balandin, Nano Lett. 12, 3238 (2012)

    Article  Google Scholar 

  26. D.L. Nika, A.A. Balandin, J. Phys. Condens. Matter. 24, 233203 (2012)

    Article  ADS  Google Scholar 

  27. V. Adamyan, V. Zavalniuk, J. Phys. Condens. Matter 24, 415401 (2012)

    Article  Google Scholar 

  28. G.D. Mahan, Many Particle Physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000)

    Book  Google Scholar 

  29. I. Paul, G. Kotliar, Phys. Rev. B 67, 115131 (2003)

    Article  ADS  Google Scholar 

  30. A.V. Joura, D.O. Demchenko, J.K. Freericks, Phys. Rev. B 69, 165105 (2004)

    Article  ADS  Google Scholar 

  31. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H.C. Neto, J. Phys. Condens. Matter 22, 175503 (2010)

    Article  ADS  Google Scholar 

  32. Y. Takane, J. Phys. Soc. Jpn. 79, 124706 (2010)

    Article  ADS  Google Scholar 

  33. C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Phys. Rev. B 73, 144427 (2006)

    Article  ADS  Google Scholar 

  34. C.L. Lu, C.P. Chang, Y.C. Huang, J.H. Ho, C.C. Hwang, M.F. Lin, J. Phys. Soc. Jpn. 76, 024701 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamze Mousavi.

Appendices

Appendix 1

The EVs of the Hamiltonian Eq. 1 are given as follows:

For \(N_\mathrm{p}=2\), they are obtained as

$$\begin{aligned} {\mathcal {E}}^{(1)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(2)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{t_{\bot }}{2}\right) ^{2}}+\frac{t_{\bot }}{2}, \end{aligned}$$
(14)
$$\begin{aligned} {\mathcal {E}}^{(3)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(4)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{t_{\bot }}{2}\right) ^{2}}-\frac{t_{\bot }}{2}, \end{aligned}$$
(15)

for \(N_\mathrm{p}=3\), they are calculated as

$$\begin{aligned} {\mathcal {E}}^{(1)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(2)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \sqrt{2}\frac{t_{\bot }}{2}\right) ^{2}} +\sqrt{2}\frac{t_{\bot }}{2}, \end{aligned}$$
(16)
$$\begin{aligned} {\mathcal {E}}^{(3)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(4)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \sqrt{2}\frac{t_{\bot }}{2}\right) ^{2}} -\sqrt{2}\frac{t_{\bot }}{2}, \end{aligned}$$
(17)
$$\begin{aligned} {\mathcal {E}}^{(5)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(6)}_{0}({\varvec{k}}) =|\epsilon _{{\varvec{k}}}|, \end{aligned}$$
(18)

while for \(N_\mathrm{p}=4\), we have

$$\begin{aligned} {\mathcal {E}}^{(1)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(2)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\frac{3+\sqrt{5}}{2}\left( \frac{t_{\bot }}{2}\right) ^{2}} +\left( \frac{1+\sqrt{5}}{2}\right) \frac{t_{\bot }}{2}, \end{aligned}$$
(19)
$$\begin{aligned} {\mathcal {E}}^{(3)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(4)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\frac{3+\sqrt{5}}{2}\left( \frac{t_{\bot }}{2}\right) ^{2}} -\left( \frac{1+\sqrt{5}}{2}\right) \frac{t_{\bot }}{2}, \end{aligned}$$
(20)
$$\begin{aligned} {\mathcal {E}}^{(5)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(6)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\frac{3-\sqrt{5}}{2}\left( \frac{t_{\bot }}{2}\right) ^{2}} +\left( \frac{1-\sqrt{5}}{2}\right) \frac{t_{\bot }}{2}, \end{aligned}$$
(21)
$$\begin{aligned} {\mathcal {E}}^{(7)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(8)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\frac{3-\sqrt{5}}{2}\left( \frac{t_{\bot }}{2}\right) ^{2}} -\left( \frac{1-\sqrt{5}}{2}\right) \frac{t_{\bot }}{2}, \end{aligned}$$
(22)

and for \(N_\mathrm{p}=5\), the EVs are as follows:

$$\begin{aligned} {\mathcal {E}}^{(1)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(2)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \sqrt{3}\frac{t_{\bot }}{2}\right) ^{2}} +\sqrt{3}\frac{t_{\bot }}{2}, \end{aligned}$$
(23)
$$\begin{aligned} {\mathcal {E}}^{(3)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(4)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \sqrt{3}\frac{t_{\bot }}{2}\right) ^{2}} -\sqrt{3}\frac{t_{\bot }}{2}, \end{aligned}$$
(24)
$$\begin{aligned} {\mathcal {E}}^{(5)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(6)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{t_{\bot }}{2}\right) ^{2}}+\frac{t_{\bot }}{2}, \end{aligned}$$
(25)
$$\begin{aligned} {\mathcal {E}}^{(7)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(8)}_{0}({\varvec{k}}) =\sqrt{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{t_{\bot }}{2}\right) ^{2}}-\frac{t_{\bot }}{2}, \end{aligned}$$
(26)
$$\begin{aligned} {\mathcal {E}}^{(9)}_{0}({\varvec{k}})= & {} -{\mathcal {E}}^{(10)}_{0}({\varvec{k}}) =|\epsilon _{{\varvec{k}}}|. \end{aligned}$$
(27)

Appendix 2

\(\xi _{xx}({\mathcal {E}},\,T)\) for \(N_\mathrm{p}=2\) is determined by

$$\begin{aligned} \xi _{xx}({\mathcal {E}},\,T)=\xi _{0}(T)\sum ^\mathrm{FBZ}_{{\varvec{k}}} \left\{ \frac{\sin ^{2}\left( \sqrt{3}k_{x}\frac{a}{2}\right) \cos ^{2}(k_{y} \frac{a}{2})}{|\epsilon _{{\varvec{k}}} |^{2}+\left( \frac{t_{\bot }}{2}\right) ^{2}}\sum _{b=1}^{4} \left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0}({\varvec{k}})} \right) \right] ^{2}\right\} ,\nonumber \\ \end{aligned}$$
(28)

for \(N_\mathrm{p}=3\), the result is

$$\begin{aligned} \xi _{xx}({\mathcal {E}},\,T)= & {} \xi _{0}(T)\sum ^\mathrm{FBZ}_{{\varvec{k}}} \sin ^{2}\left( \sqrt{3}k_{x}\frac{a}{2}\right) \cos ^{2}\left( k_{y}\frac{a}{2}\right) \left\{ \frac{1}{|\epsilon _{{\varvec{k}}}|^{2}+\left( \sqrt{2}\frac{t_{\bot }}{2}\right) ^{2}} \right. \nonumber \\&\quad \left. \times \,{\sum ^{4}_{b=1}}^{\prime }\left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0} ({\varvec{k}})} \right) \right] ^{2}+\frac{1}{|\epsilon _{{\varvec{k}}}|^{2}}{\sum ^{6}_{b=5}}^{\prime } \left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0}({\varvec{k}})} \right) \right] ^{2}\right\} , \end{aligned}$$
(29)

when \(N_\mathrm{p}=4\), it is found that

$$\begin{aligned} \xi _{xx}({\mathcal {E}},\,T)= & {} \xi _{0}(T)\sum ^\mathrm{FBZ}_{{\varvec{k}}} \sin ^{2}\left( \sqrt{3}k_{x}\frac{a}{2}\right) \cos ^{2}\left( k_{y}\frac{a}{2}\right) \nonumber \\&\times \left\{ \frac{1}{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{3+\sqrt{5}}{2}\right) \left( \frac{t_{\bot }}{2}\right) ^{2}}{\sum ^{4}_{b=1}}^{\prime }\left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0}({\varvec{k}})} \right) \right] ^{2} \right. \nonumber \\&\left. +\,\frac{1}{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{3-\sqrt{5}}{2}\right) \left( \frac{t_{\bot }}{2}\right) ^{2}}{\sum ^{8}_{b=5}}^{\prime } \left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0}({\varvec{k}})} \right) \right] ^{2}\right\} , \end{aligned}$$
(30)

and \(N_\mathrm{p}=5\) leads to

$$\begin{aligned} \xi _{xx}({\mathcal {E}},\,T)= & {} \xi _{0}(T)\sum ^\mathrm{FBZ}_{{\varvec{k}}} \sin ^{2}\left( \sqrt{3}k_{x}\frac{a}{2}\right) \cos ^{2}\left( k_{y}\frac{a}{2}\right) \left\{ \frac{1}{|\epsilon _{{\varvec{k}}}|^{2}+\left( \sqrt{3}\frac{t_{\bot }}{2}\right) ^{2}} {\sum ^{4}_{b=1}}^{\prime }\right. \nonumber \\&\left. \times \left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0} ({\varvec{k}})} \right) \right] ^{2} \right. \nonumber \\&\left. +\,\frac{1}{|\epsilon _{{\varvec{k}}}|^{2}+\left( \frac{t_{\bot }}{2}\right) ^{2}} {\sum ^{8}_{b=5}}^{\prime } \left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0}({\varvec{k}})} \right) \right] ^{2}+\frac{1}{|\epsilon _{{\varvec{k}}}|^{2}}{\sum ^{10}_{b=9}}^{\prime }\right. \nonumber \\&\left. \times \left[ \mathfrak {I}\left( \frac{1}{E-{\mathcal {E}}^{(b)}_{0}({\varvec{k}})} \right) \right] ^{2}\right\} , \end{aligned}$$
(31)

where \(\sum ^{\prime }\) shows sum over just some bands but not all.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, H., Khodadadi, J. Tight-Binding Investigation of Thermal Conductivity of Graphene and Few-Layer Graphene Systems. Int J Thermophys 36, 2638–2646 (2015). https://doi.org/10.1007/s10765-015-1946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1946-8

Keywords

Navigation