Skip to main content
Log in

Bi-Confluent Heun Potentials for a Stationary Relativistic Wave Equation for a Spinless Particle

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

The variety of bi-confluent Heun potentials for a stationary relativistic wave equation for a spinless particle is presented. The physical potentials and energy spectrum of this wave equation are related to those for a corresponding Schrödinger equation in the sense that all the potentials derived for the latter equation are also applicable for the wave equation under consideration. We show that in contrast to the Schrödinger equation the characteristic spatial length of the potential imposes a restriction on the energy spectrum that directly reflects the uncertainty principle. Studying the inversesquare- root bi-confluent Heun potential, it is shown that the uncertainty principle limits, from below, the principal quantum number for the bound states, i.e., physically feasible states have an infimum cut so that the ground state adopts a higher quantum number as compared to the Schrödinger case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mekhitarian, V.M., J. Contemp. Phys.(Arenian Ac. Sci.), 2018, Vol. 53, p. 1.

    Article  ADS  Google Scholar 

  2. Kragh, H., Am. J. Phys., 1984, Vol. 52, p. 1024.

    Article  ADS  Google Scholar 

  3. Greiner, W., Relativistic Quantum Mechanics. Wave equations, Berlin: Springer, 2000.

    MATH  Google Scholar 

  4. Ohlsson, T., Relativistic Quantum Physics–From Advanced Quantum Mechanics to Introductory Quantum Field Theory, Cambridge: Cambridge University Press, 2011.

    MATH  Google Scholar 

  5. Heun’s Differential Equations, Ronveaux, A., (Ed.), London: Oxford University Press, 1995.

  6. Ishkhanyan, A. and Krainov, V., Eur. Phys. J. Plus, 2016, Vol. 131, p. 342.

    Article  Google Scholar 

  7. Lemieux, A. and Bose, A.K., Ann. Inst. Henri Poincaré A, 1969, Vol. 10, p. 259.

    Google Scholar 

  8. Ishkhanyan, T.A. and Ishkhanyan, A.M., Ann. Phys., 2017, Vol. 383, p. 79.

    Article  ADS  Google Scholar 

  9. Ishkhanyan, A.M., EPL, 2015, Vol. 112, p. 10006.

    Article  Google Scholar 

  10. Bender, C.M. and Boettcher, S., Phys. Rev. Lett., 1998, Vol. 80, p. 5243.

    Article  ADS  MathSciNet  Google Scholar 

  11. Bender, C.M., J. Phys. Conf. Ser., 2015, Vol. 631, p. 012002.

    Article  Google Scholar 

  12. NIST Handbook of Mathematical Functions, Olver, F.W.J., Lozier, D.W., Boisvert, R.F., and Clark, C.W., (Eds.), New York: Cambridge University Press, 2010.

    MATH  Google Scholar 

  13. Slavyanov, S.Yu. and Lay, W., Special Functions, Oxford: Oxford University Press, 2000.

    MATH  Google Scholar 

  14. Znojil, M., Phys. Rev. A, 2000, Vol. 61, p. 066101.

    Article  ADS  Google Scholar 

  15. Silvestrov, P.G. and Efetov, K.B., Phys. Rev. B, 2008, Vol. 77, p. 155436.

    Article  ADS  Google Scholar 

  16. Quigg, C. and Rosner, J.L., Phys. Rep., 1979, Vol. 56, p. 167.

    Article  ADS  MathSciNet  Google Scholar 

  17. Ishkhanyan, A.M. and Krainov, V.P., JETP Lett., 2017, Vol. 105, p. 43.

    Article  ADS  Google Scholar 

  18. Courant, R. and Hilbert, D., Methods of Mathematical Physics, vol. 1, New York: Wiley-Interscience, 1989.

    Book  MATH  Google Scholar 

  19. Schrödinger, E., Annalen der Physik, 1926, Vol. 79, p. 489.

    Article  Google Scholar 

  20. Schrödinger, E., Annalen der Physik, 1926, Vol. 76, p. 361.

    Article  Google Scholar 

  21. Kratzer, A., Z. Phys., 1920, Vol. 3, p. 289.

    Article  ADS  Google Scholar 

  22. Morse, P.M., Phys. Rev., 1929, Vol. 34, p. 57.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Ishkhanyan.

Additional information

Original Russian Text © H.H. Azizbekyan, A.M. Manukyan, V.M. Mekhitarian, A.M. Ishkhanyan, 2018, published in Izvestiya Natsional'noi Akademii Nauk Armenii, Fizika, 2018, Vol. 53, No. 4, pp. 373–381.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizbekyan, H.H., Manukyan, A.M., Mekhitarian, V.M. et al. Bi-Confluent Heun Potentials for a Stationary Relativistic Wave Equation for a Spinless Particle. J. Contemp. Phys. 53, 279–285 (2018). https://doi.org/10.3103/S1068337218040023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337218040023

Keywords

Navigation