Skip to main content
Log in

FMR and EPR in Ni@C nanocomposites: Size and concentration effects

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

One-domain Ni@C nanoparticles encapsulated in carbon coating have been investigated depending on the size and concentration of Ni in carbon. The nanoparticles of nickel were prepared with the average diameters changing in a broad range of 4–45 nm, and the concentration of Ni in C varies in 2–12 wt%. To prepare the Ni@C nanocomposites the solid solutions of nickel phthalocyanine–metal-free phthalocyanine (NiPc) x (H2Pc)1–x , 0 ≤ x ≤ 1 were synthesized and the solidphase pyrolysis of these compounds was performed. In the case of ultradispersive Ni nanoparticles (the interval of quantum dots is 1–10 nm), a considerable shift of the resonance field and broadening of resonance absorption field were revealed in the spectra of FMR at room temperature. The data were interpreted taking into account the essential contribution of the surface magnetic anisotropy, the magnetic field of which far exceeds the magnetic field of volume anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gubin, S.P., Magnetic Nanoparticles, Weinheim Wiley, 2009.

    Book  Google Scholar 

  2. Guimaraes, A.A., Principles of Nanomagnetism, Berlin, Heidelberg Springer-Verlag, 2009.

    Book  Google Scholar 

  3. Skomski, R., J. Phys: Condens. Matter, 2003, vol. 15, p. R841.

  4. Huang, K.C., J. Phys. D: Appl. Phys., 2010, vol. 43, p. 374001.

    Article  Google Scholar 

  5. Pankhurst, Q.A., Thank, N.T.K., Jones, S.K., and Dobson, J., J. Phys. D: Appl. Phys., 2009, vol. 42, p. 224001.

    Article  ADS  Google Scholar 

  6. Zhentao, L., Chao, H., Chang, Y., and Jieshan, Q., J. Nanosci. Nanotechnol., 2009, vol. 9, p. 7473.

    Google Scholar 

  7. Ibrahim, E.M.M., Hampel, S., Kamsanipally, R., Thomas, J., Erdmann, K., Fuessel, S., Taeschner, C., Khavrus, V.O., Gemming, T., Leonhardt, A., and Buechner, B., Carbon, 2013, vol. 63, p. 358.

    Article  Google Scholar 

  8. Huang, H., Xie, Q., Kang, M., and Zhang, B., Nanotechnology, 2009, vol. 20, p. 365101.

    Article  Google Scholar 

  9. Park, J.K., Jung, J., Subramaniam, P., and Shah, B.P., Small, 2011, vol. 7, p. 1647.

    Article  Google Scholar 

  10. Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R., Shirinyan, G.H., and Sharoyan, E.G., J. Contemp. Phys. (Armenian Ac. Sci.), 2010, vol. 45, p. 132.

    Article  ADS  Google Scholar 

  11. Manukyan, A.S., Mirzakhanyan, A.A., Badalyan, G.R., Shirinyan, G.H., Fedorenko, A.G., Lianguzov, N.V., Yuzyuk, Yu.I., Bugaev, L.A., and Sharoyan, E.G., J. Nanopart. Res., 2012, vol. 14, p. 982.

    Article  ADS  Google Scholar 

  12. Manukyan, A.S., Mirzakhanyan, A.A., Khachatryan, T.K., Badalyan, G.R., Abdulvakhidov, K.G., Bugaev, L.A., and Sharoyan, E.G., J. Contemp. Phys.(Arenian Ac. Sci.), 2012, vol. 47, p. 292.

    Article  ADS  Google Scholar 

  13. Manukyan, A.S., Mirzakhanyan, A.A., Khachatyran, T.K., Badalyan, G.R., Arzumanyan, G.M., and Sharoyan, E.G., J. Contemp. Phys. (Armenian Ac. Sci.), 2013, vol. 48, p. 43.

    Article  ADS  Google Scholar 

  14. Manukyan, A.S., Mirzakhanyan, A.A., Khachaturyan, R.D., Gyulasaryan, H.?., Kocharian, A.N., Yuzyuk, Yu.I., and Sharoyan, E.G., J. Contemp. Phys. (Armenian Ac. Sci.), 2015, vol. 50, p. 195.

    Article  ADS  Google Scholar 

  15. Sharoyan, E., Mirzakhanyan, A., Gyulasaryan, H., Sanchez, C., Kocharian, A., Bernal, O., and Manukyan, A., IEEE Transactions on Magnetics, 2016, vol. 52, p. 1.

    Article  Google Scholar 

  16. Kong, L., Lu, X., Bian, X., Zhang, W., and Wang, C., ACS Appl. Mater. Inter., 2011, vol. 3, p. 35.

    Article  Google Scholar 

  17. Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno, T., and Serna, C.J., J. Phys. D: Appl. Phys., 2003, vol. 36, p. 182.

    Article  Google Scholar 

  18. Kats, E. and Willner, I., Angew Chem. Int. Ed., 2004, vol. 43, p. 6042.

    Article  Google Scholar 

  19. Teng, M.-H., Tsai, S.-W., and Chio, W.-A., Alloys and Compounds, 2010, vol. 495, p. 488.

    Article  Google Scholar 

  20. Liu, Z., Lv, C., and Tan, X., Phys. Chem. Solids, 2013, vol. 74, p. 1275.

    Article  ADS  Google Scholar 

  21. Uhm, Y.R., Lee, H.M., and Rhee, C.K., IEEE Transactions on Magnetics, 2009, vol. 45, p. 2453.

    Article  ADS  Google Scholar 

  22. El-Gendy, A.A., Ibrahim, E.M.M., Khavrus, V.O., Krupskaya, Y., Hampel, S., Leonhardt, A., Buechner, B., and Klingeler, R., Carbon, 2009, vol. 47, p. 2821.

    Article  Google Scholar 

  23. Tsurin, V.A., Yermakov, A.Ye., Uimin, M.A., Mysik, A.A., Shchegoleva, N.N., Gaviko, V.S., and Maikov, V.V., Phys. Solid State, 2014, vol. 56, p. 287.

    Article  ADS  Google Scholar 

  24. Lee, S.J., Jung, J., Kim, M.A., Kim, Y.-R., and Park, J.K., J. Mater. Sci., 2012, vol. 47, p. 8112.

    Article  ADS  Google Scholar 

  25. Kittel, C., Introduction to Solid State Physics, New York Wiley, 2005.

    MATH  Google Scholar 

  26. Morrish, A.H., The Physical Principles of Magnetism, New York Institute of Electrical and Electronic Engineers, 2001.

    Book  Google Scholar 

  27. Singh, V. and Seehra, M.S., J. Phys.: Condens. Matter, 2009, vol. 21, p. 456001.

    ADS  Google Scholar 

  28. Berger, R., Bissey, J.-C., and Kliava, J., J. Phys.: Condens. Matter., 2000, vol. 12, p. 9347.

    ADS  Google Scholar 

  29. Berger, R., Bissey, J.-C., Kliava, J., Daubric, H., and Estournes, C., J. Magn. Magn. Mater., 2001, vol. 234, p. 535.

    Article  ADS  Google Scholar 

  30. van Vleck, J.H., Phys. Rev., 1950, vol. 78, p. 266.

    Article  ADS  Google Scholar 

  31. Dorfman, Y.G., JETP, 1965, vol. 21, p. 472.

    ADS  Google Scholar 

  32. Petrov, Yu.I., Fizika malykh chastits (Physics of Small Particles), Moscow Nauka, 1982.

    Google Scholar 

  33. Bodker, F., Morup, S., and Linderoth, S., Phys. Rev. Lett., 1994, vol. 72, p. 282.

    Article  ADS  Google Scholar 

  34. Shilov, V.P., Bacri, J.-C., Gazeau, F., Gendron, F., Perzynski, R., and Raikher, Y.L., Phys. Rev. B, 1999, vol. 60, p. 11902.

    Article  ADS  Google Scholar 

  35. Shilov, V.P., Bacri, J.-C., Gazeau, F., Gendron, F., Perzynski, R., and Raikher, Y.L., J. Appl. Phys., 1999, vol. 85, p. 6642.

    Article  ADS  Google Scholar 

  36. Neel, L., J. Phys. Rad., 1954, vol. 15, p. 225.

    Article  Google Scholar 

  37. Brown W.F., Micromagnetics, New York John Wiley & Sons, 1963.

    MATH  Google Scholar 

  38. Aharoni, A., J. Appl. Phys., 1987, vol. 61, p. 3302.

    Article  ADS  Google Scholar 

  39. Aharoni, A., J. Appl. Phys., 1988, vol. 64, p. 6434.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Manukyan.

Additional information

Original Russian Text © E.G. Sharoyan, A.A. Mirzakhanyan, H.T. Gyulasaryan, A.N. Kocharian, A.S. Manukyan, 2017, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Fizika, 2017, Vol. 52, No. 2, pp. 201–211.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharoyan, E.G., Mirzakhanyan, A.A., Gyulasaryan, H.T. et al. FMR and EPR in Ni@C nanocomposites: Size and concentration effects. J. Contemp. Phys. 52, 147–154 (2017). https://doi.org/10.3103/S1068337217020086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337217020086

Keywords

Navigation