Skip to main content
Log in

CuO ceramics: Features of the microstructure and of the temperature dependence of resistance

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Effect of laser radiation on surface morphology, elemental composition and the nature of the temperature dependence of resistance of copper oxide ceramic samples obtained under different conditions of heat treatment was investigated. Some of the samples were covered by copper film and exposed to additional heat treatment. It is found that the laser irradiation both in vacuum and in air leads to a change in the surface microstructure and to the loss of oxygen in the samples. Additional heat treatment with subsequent rapid cooling equalizes the oxygen concentration in the areas exposed and not exposed to laser treatment. Layering of the samples with different ratios of copper and oxygen in the layers occurs at high temperatures. Peculiarities of the temperature dependence of resistance, which results from non-homogeneity in the composition and granular structure of the samples, were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J.S. and Greenwood, N.N., Proc. R. Soc. Lond. A, 1952, vol. 215, p. 353.

    Article  ADS  Google Scholar 

  2. Liao, L., Yan, B., Zheng, Z., Bao, Q.L., Li, C.M., Shen, Z.X., Zhang, J.X., Gong, H., Li, J.C., and Yu, T., Nanotechnology, 2009, vol. 20, p. 085203.

    Article  ADS  Google Scholar 

  3. Richardson, T.I., Solid State Ionics, 2003, vol. 165, p. 305.

    Article  Google Scholar 

  4. Bednorz, J.G. and Mueller, K.A., Z. Phys., 1986, vol. B64, p. 189.

    Article  ADS  Google Scholar 

  5. Li, J., Vizkelethy, G., Revesz, P., and Mayer, J.W., J. Appl. Phys., 1991, vol. 69, p. 1020.

    Article  ADS  Google Scholar 

  6. Osipov, V.V., Kochev, I.V., and Naumov, S.V., JETP, 2001, vol. 93, p. 1082.

    Article  ADS  Google Scholar 

  7. Kuzanyan, A., Petrosyan, V., Tatoyan, V., Kuzanyan, V., Nikoghosyan, V., Vardanyan, V., Pilosyan, S., and Gulian, A., Proc. SPIE, 2011, vol. 7998, p. 67.

    Google Scholar 

  8. Mitin, A.V., J. Supercond. Nov. Magn., 2007, vol. 20, p. 591.

    Article  Google Scholar 

  9. Mitin, A.V., Bulletin of the Russian Academy of Sciences: Physics, 2009, vol. 73, p. 1061.

    Article  ADS  Google Scholar 

  10. He, Y., Yin, Y., Zech, M., et al., Science, 2014, vol. 344, p. 608.

    Article  ADS  Google Scholar 

  11. Wang, Zh., Liu, Y., Martin, D.J., Wang, W., Tang, J., and Huang, W., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 14956.

    Article  Google Scholar 

  12. Akimoto, K., Ishizuka, S., Yanagita, M., Nawa, Y., Paul, G.K., and Sakurai, T., Solar Energy, 2006, vol. 80, p. 715.

    Article  ADS  Google Scholar 

  13. Abd-Elkader, O.H. and Deraz, N.M., Int. J. Electrochem. Sci., 2013, vol. 8, p. 8614.

    Google Scholar 

  14. Noda, S., Shima, H., and Akinaga, H., J. Phys.: Conf. Ser., 2013, vol. 433, p. 012027.

    ADS  Google Scholar 

  15. Mittiga, A., Salsa, E., Sarto, F., Tucci, M., and Vasanthi, R., Appl. Phys. Letters, 2006, vol. 88, p. 163502.

    Article  ADS  Google Scholar 

  16. Minami, T., Nishi, Y., Miyata, T., and Nomoto, J.I., Appl. Phys. Express, 2011, vol. 4, p. 062301.

    Article  ADS  Google Scholar 

  17. Fujimoto, K., Oku, T., Akiyama, T., and Suzuki, A., J. Phys.: Conf. Ser., 2013, vol. 433, p. 012024.

    ADS  Google Scholar 

  18. Casella, I.G. and Gaffa, M., Electroanal. Chem., 2000, vol. 494, p. 12.

    Article  Google Scholar 

  19. Kuzanyan, A.S., Badalyan, G.R., Kuzanyan, V.S., Nikogosyan, V.R., Pilosyan, S.Kh., and Nesterov, V.M., Quantum Electronics, 2011, vol. 41, p. 619.

    Article  ADS  Google Scholar 

  20. Kuzanyan, A.S., Pashayan, S.T., Tatoyan, V.T., Nikoghosyan, V.R., Kuzanyan, V.S., Vardanyan, V.H., Nesterov, V.M., Pilosyan, S.Kh., and Grasyuk, A.Z., Int. J. Mod. Phys. Conf. Ser., 2012, vol. 15, p. 161.

    Article  Google Scholar 

  21. Kuzanyan, A.S., Pashayan, S.T., and Tatoyan, V.T., J. Contemp. Phys. (Armenian Ac. Sci.), 2014, vol. 49, p. 28.

    Article  ADS  Google Scholar 

  22. Pashayan, S.T., Electronika-info, (Electronics-info), 2014, vol. 5, p. 28.

    Google Scholar 

  23. Schramm, L., Behr, G., Löser, W., and Wetzig, K., Phase Equil. Diffus., 2005, vol. 26, p. 605.

    Article  Google Scholar 

  24. Zheng, X.G., Tsutsumi, N., Tanaka, S., Suzuki, M., and Xu, C.N., Physica C, 1999, vol. 321, p. 67.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Pashayan.

Additional information

Original Russian Text © S.T. Pashayan, A.S. Kuzanyan, 2015, published in Izvestiya NAN Armenii, Fizika, 2015, Vol. 50, No. 2, pp. 248–257.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashayan, S.T., Kuzanyan, A.S. CuO ceramics: Features of the microstructure and of the temperature dependence of resistance. J. Contemp. Phys. 50, 187–194 (2015). https://doi.org/10.3103/S1068337215020139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337215020139

Keywords

Navigation