Skip to main content
Log in

Laser Meson Factory

  • PARTICLE ACCELERATION
  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

Modern XCELS-type laser facilities under development can be a good addition to traditional meson factories, leading to high momentum fluxes of elementary particles produced by irradiation of converter targets with a laser-accelerated electron or proton beam. This is substantiated by the numerical simulation of the generation of high-current charged particle beams under the action of a femtosecond laser pulse from the XCELS [1] facility either on a near-critical density plasma or on a denser (but still low-density) plasma, and the subsequent calculation of the meson yield from the converter target. The end-to-end simulation by the particle-in-cell method (PIC codes) and the Monte Carlo method (GEANT4 code) quantitatively characterizes the generation of pions, mesons, kaons, and even more exotic elementary particles. For example, the number of produced pions for the parameters of the XCELS laser pulse is predicted to be about 108 particles per shot. The calculation of the yield of fast neutrons is also performed, the number of which exceeds 1011 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Khazanov, E. et al., High Power Laser Science and Engineering, 2023, pp. 1–77. https://doi.org/10.1017/hpl.2023.69

  2. Bychenkov, V.Yu., Tikhonchuk, V.T., and Tolokonnikov, S.V., J. Exp. Theor. Phys., 1999, vol. 88, p. 1137.

  3. Bychenkov, V.Yu., Sentoku, Y., Bulanov, S.V., Mima, K., Mourou, G., and Tolokonnikov, S.V., JETP Lett., 2001, vol. 74, no. 12, p. 586.

    Article  ADS  Google Scholar 

  4. Nedorezov, V.G., Rykovanov, S.G., and Savel’ev, A.B., Phys. Usp., 2021, vol. 64, p. 1214.

    Article  ADS  Google Scholar 

  5. Schumaker, W., Liang, T., Clarke, R., Cole, J.M., Grittani, G., Kuschel, S., Mangles, S.P.D., Najmudin, Z., Poder, K., Sarri, G., Symes, D., Thomas, A.G.R., Vargas, M., Zepf, M., and Krushelnick, K., New J. Phys., 2018, vol. 20, p. 073008; Phys. Today, 2018, vol. 71, p. 19.

    Google Scholar 

  6. Lobok, M.G., Brantov, A.V., and Bychenkov, V.Yu., Plasma Phys., 2019, vol. 26, p. 123107.

    Article  Google Scholar 

  7. Lobok, M.G., Brantov, A.V., Gozhev, D.A., and Bychenkov, V.Yu., Plasma Phys. Control. Fusion, 2018, vol. 60, p. 084010.

    Article  ADS  Google Scholar 

  8. Bychenkov, V.Yu. and Lobok M.G., JETP Lett., 2021, vol. 114, p. 571.

    Article  ADS  Google Scholar 

  9. Brantov, A.V., Govras, E.A., Kovalev, V.F., and Bychenkov, V.Yu., Phys. Rev. Lett., 2016, vol. 116, p. 085004.

    Article  ADS  Google Scholar 

  10. Bychenkov, V.Yu., Govras, E.A., and Brantov, A.V., JETP Lett., 2016, vol. 104, p. 618.

    Article  ADS  Google Scholar 

  11. Bychenkov, V.Yu. and Lobok, M.G., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 6, pp. S706–S714. https://doi.org/10.3103/S1068335623180045

  12. Brantov, A.V., Rakitina, M.A., Glazyrin, S.I., and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7, pp. S755–S761. https://doi.org/10.3103/S106833562319003X

  13. Lu, W., Tzoufras, M., Joshi, C., Tsung, F.S., Mori, W.B., Vieira, J., Fonseca, R.A., and Silva, L.O., Phys. Rev. ST Accel. Beams, 2007, vol. 10, p. 061301.

    Article  ADS  Google Scholar 

  14. Lobok, M.G. and Bychenkov, V.Yu., Bull. Lebedev Phys. Inst., 2023, vol. 50, suppl. 7, pp. S782–S789. https://doi.org/10.3103/S1068335623190120

  15. Yogo, A., Mirfayzi, S.R., Arikawa, Y., Abe, Y., Wei, T., Mori, T., Lan, Z., Hoonoki, Y., Golovin, D.O., Koga, K., Suzuki, Y., Kanasaki, M., Fujioka, S., Nakai, M., Hayakawa, T., Mima, K., Nishimura, H., Kar, S., and Kodama, R., Appl. Phys. Exp., 2021, vol. 14, p. 106001.

    Article  ADS  Google Scholar 

  16. Zhang, F., Li, B., Shan, L., Zhang, B., Hong, W., and Gu, Y., High Power Laser Sci. Eng., 2017, vol. 5, e16.

    Article  Google Scholar 

  17. Berg, F., Desorgher, L., Fuchs, A., Hajdas, W., Hodge, Z., Kettle, P.-R., Knecht, A., Lüscher, R., Papa, A., Rutar, G., and Wohlmuther, M., Phys. Rev. Acc. Beam, 2016, vol. 19, p. 024701.

    Article  ADS  Google Scholar 

  18. Bottan, P., Camerini, P., Celano, L., De Mori, F., De Palma, M., Fiore, L., Grion, N., Paticchio, V., Rui, R., Venturelli, L., and Wheadon, R., Nucl. Instrum. Methods A, 1999, vol. 427, no. 3, p. 423.

    Article  ADS  Google Scholar 

  19. Glaser, C.J., Pocanic, D., van der Schaaf, A., Baranov, V.A., Khomutov, N.V., Kravchuk, N.P., and Kuchinsky, N.A., Nucl. Instrum. Methods A, 2021, vol. 1010, p. 165460.

    Article  Google Scholar 

  20. Ericson, T., Hughes, V., and Nagle, D., The Meson Factories, Berkeley, Calif.: Univ. California Press, 1991.

    Book  Google Scholar 

Download references

Funding

The work is supported by the Complex Program for Developing the Nuclear Science, Equipment, and Technologies until 2024, project no. 075-03-2022-047 of the Federal Research Center Institute of Applied Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Brantov, M. G. Lobok or V. Yu. Bychenkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brantov, A.V., Lobok, M.G. & Bychenkov, V.Y. Laser Meson Factory. Bull. Lebedev Phys. Inst. 50 (Suppl 7), S790–S796 (2023). https://doi.org/10.3103/S1068335623190041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623190041

Keywords:

Navigation