Skip to main content
Log in

Issues and Requirements for Aluminum Alloys Used in Aircraft Components: State of the Art

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Aluminum alloys have always been the material of choice for the aircraft industry owing to their versatile attributes, such as excellent strength to weight ratio, good corrosion resistance, thermal conductivity, and low production cost after wood. However, these days composite materials, carbon fiber reinforced plastic and fiber metal laminate are substituting aluminum alloys mainly because of their incapability to work at high temperatures. Nonetheless, continuous research in these aluminum alloys will effectively combat with those modern polymer composites and carbon fiber reinforced plastic. And so forth, mechanical and tribological properties of aluminum alloys can nowadays be enhanced by adding a suitable reinforcement in an appropriate volume fraction. Reinforcements like micro or nano sized SiC, Al2O3, TiC, B4C, SiO2 and iron powder when used, can alter the microstructural characteristics that develop excellent physical and mechanical properties in aluminum alloys, primarily for aerospace applications. These alloys are being used in different aircraft components that have a relative motion, like actuators and track roll units of a control surface. Stress and wear are generated due to the relative motion of these components during take-off and landing, causing a rise in temperature. And hence, a brief study on moving components used in aircrafts and tribological behaviour of aircraft components is presented in the literature. Also considering that the selection of an appropriate material for the proper functioning of an aircraft component is critical, three most important properties viz. strength, fatigue and corrosion resistance of an aircraft have been provided. Therefore this review article emphasizes on the following topics: (1) aluminum alloys in the aerospace industries, (2) aircraft components with relative motion, their working and material being used, (3) substantial properties of aircraft components viz. strength, fatigue resistance and corrosion resistance, (4) tribological aspect of an aircraft, (5) elevated-temperature behaviour of aluminum alloys, and (6) role of reinforcement for improving properties. This review article is beneficial for those researchers and academicians who want to seek the understanding, pertaining to the usefulness of the aluminum in the aircraft industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Peters, M. and Leyens, C., Aerospace and space materials, Mater. Sci. Eng., 2009, vol. 3, pp. 1–11.

    Google Scholar 

  2. Gloria, A., Montanari, R., Richetta, M., and Varone, A., Alloys for aeronautic applications: State of the art and perspectives, Metals, 2019, vol. 9, no. 6, p. 662. https://doi.org/10.3390/met9060662

    Google Scholar 

  3. Mouritz, A.P., Introduction to Aerospace Materials, Elsevier, 2012.

    Google Scholar 

  4. Boyer, R.R., Cotton, J.D., Mohaghegh, M., and Schafrik, R.E., Materials considerations for aerospace applications, MRS Bull., 2015, vol. 40, no. 12, pp. 1055–1066. https://doi.org/10.1557/mrs.2015.278

    Google Scholar 

  5. Aerospace Materials and Material Technologies, Prasad, N.E. and Wanhill, R.J., Eds., Singapore: Springer, 2017, vol. 3. https://doi.org/10.1007/978-981-10-2134-3.

  6. Gangil, N., Siddiquee, A.N., and Maheshwari, S., Aluminium based in-situ composite fabrication through friction stir processing: A review, J. Alloys Compd., 2017, vol. 715, pp. 91–104. https://doi.org/10.1016/j.jallcom.2017.04.309

    Google Scholar 

  7. Rathee, S., Maheshwari, S., Siddiquee, A.N., and Srivastava, M., A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing, Crit. Rev. Solid State Mater. Sci., 2018, vol. 43, no. 4, pp. 334–366. https://doi.org/10.1080/10408436.2017.1358146

    Google Scholar 

  8. Campbell, F.C., Jr., Manufacturing Technology for Aerospace Structural Materials, Elsevier, 2011.

    Google Scholar 

  9. Breuer, U.P., Commercial Aircraft Composite Technology, Cham: Springer, 2016, pp. 220–234. https://doi.org/10.1007/978-3-319-31918-6.

  10. Warner, T., Recently developed aluminium solutions for aerospace applications, Mater. Sci. Forum, 2006, vol. 519, pp. 1271–1278. https://doi.org/10.4028/www.scientific.net/MSF.519-521.1271

    Google Scholar 

  11. Koli, D.K., Agnihotri, G., and Purohit, R., Advanced aluminium matrix composites: The critical need of automotive and aerospace engineering fields, Mater. Today: Proc., 2015, vol. 2, nos. 4–5, pp. 3032–3041. https://doi.org/10.1016/j.matpr.2015.07.290

    Google Scholar 

  12. Starke, E.A., Jr. and Staley, J.T., Application of modern aluminum alloys to aircraft, Prog. Aerosp. Sci., 1996, vol. 32, nos. 2–3, pp. 131–172. https://doi.org/10.1533/9780857090256.3.747

    Google Scholar 

  13. Davis, J.R., Aluminum and Aluminum Alloys, Materials Park, OH: ASM Int., 1993.

    Google Scholar 

  14. Dursun, T. and Soutis, C., Recent developments in advanced aircraft aluminium alloys, Mater. Des. (1980–2015), 2014, vol. 56, pp. 862–871. https://doi.org/10.1016/j.matdes.2013.12.002

  15. Prabhu, T.R., An overview of high-performance aircraft structural Al alloy-AA7085, Acta Metall. Sin. (Engl. Lett.), 2015, vol. 28, no. 7, pp. 909–921. https://doi.org/10.1007/s40195-015-0275-z

  16. Frodal, B.H., Christiansen, E., Myhr, O.R., and Hopperstad, O.S., The role of quench rate on the plastic flow and fracture of three aluminium alloys with different grain structure and texture, Int. J. Eng. Sci., 2020, vol. 150, p. 103257. https://doi.org/10.1016/j.ijengsci.2020.103257

    Google Scholar 

  17. Sato, T., Nanostructure control for high-strength and high-ductility aluminium alloys, in Nanomaterials, Elsevier, 2006, pp. 315–346.

    Google Scholar 

  18. Su, H., Gao, W., Feng, Z., and Lu, Z., Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites, Mater. Des. (1980-2015), 2012, vol. 36, pp. 590–596. https://doi.org/10.1016/j.matdes.2011.11.064

  19. Mazahery, A. and Ostadshabani, M., Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites, J. Compos. Mater., 2011, vol. 45, no. 24, pp. 2579–2586. https://doi.org/10.1177/0021998311401111

    Google Scholar 

  20. Zhang, Y.N., Cao, X., Larose, S., and Wanjara, P., Review of tools for friction stir welding and processing, Can. Metall. Q., 2012, vol. 51, no. 3, pp. 250–261. https://doi.org/10.1179/1879139512Y.0000000015

    Google Scholar 

  21. Staley, J.T. and Lege, D.J., Advances in aluminium alloy products for structural applications in transportation, J. Phys. IV, 1993, vol. 3, no. C7, p. C7–179. https://doi.org/10.1051/jp4:1993728

    Google Scholar 

  22. Aircraft Structure. http://home.iitk.ac.in. Accessed January 11, 2020.

  23. Jawalkar, C.S. and Kant, S., A review on use of aluminium alloys in aircraft components, i-Manager’s J. Mater. Sci., 2015, vol. 3, no. 3, p. 33. https://doi.org/10.26634/jms.3.3.3673

    Google Scholar 

  24. Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R., and Miller, W.S., Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng., A, 2000, vol. 280, no. 1, pp. 102–107. https://doi.org/10.1016/S0921-5093(99)00674-7

    Google Scholar 

  25. Froes, F.H., Advanced metals for aerospace and automotive use, Mater. Sci. Eng., A, 1994, vol. 184, no. 2, pp. 119–133. https://doi.org/10.1016/0921-5093(94)91026-X

    Google Scholar 

  26. Sjöberg, G., Aircraft Engine Structure Materials, Volvo Aero Corporation, 2008. https://www.sto.nato.int/publications/…/EN-AVT-207-13.pdf. 2008.

  27. Immarigeon, J.P., Holt, R.T., Koul, A.K., Zhao, L., Wallace, W., and Beddoes, J.C., Lightweight materials for aircraft applications, Mater. Charact., 1995, vol. 35, no. 1, pp. 41–67. https://doi.org/10.1016/1044-5803(95)00066-6

    Google Scholar 

  28. Prabhakaran, R., Nanocomposites for aircraft applications, J. Aerosp. Sci. Technol., 2014, vol. 66, no. 3, pp. 169–185.

    Google Scholar 

  29. Nakai, M. and Eto, T., New aspect of development of high strength aluminum alloys for aerospace applications, Mater. Sci. Eng., A, 2000, vol. 285, nos. 1–2, pp. 62–68. https://doi.org/10.1016/S0921-5093(00)00667-5

    Google Scholar 

  30. Williams, J.C. and Starke, E.A., Jr., Progress in structural materials for aerospace systems, Acta Mater., 2003, vol. 51, no. 19, pp. 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Google Scholar 

  31. Murphy, A., Lynch, F., Price, M., and Gibson, A., Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panels, Proc. Inst. Mech. Eng., Part G, 2006, vol. 220, no. 4, pp. 267–278. https://doi.org/10.1243/09544100JAERO51

    Google Scholar 

  32. Wanhill, R.J.H. and Byrnes, R.T., Stress corrosion cracking in aircraft structures, in Aerospace Materials and Material Technologies, Singapore: Springer, 2017, pp. 387–410. https://doi.org/10.1007/978-981-10-2143-5_19.

  33. Federal Aviation Administration, Pilot’s Handbook of Aeronautical Knowledge (Federal Aviation Administration), Skyhorse Publ., 2009.

    Google Scholar 

  34. Jayakrishna, K., Kar, V.R., Sultan, M.T., and Rajesh, M., Materials selection for aerospace components, in Sustainable Composites for Aerospace Applications, Woodhead Publ., 2018, pp. 1–18.

    Google Scholar 

  35. Bhaumik, S.K., Sujata, M., and Venkataswamy, M.A., Fatigue failure of aircraft components, Eng. Failure Anal., 2008, vol. 15, no. 6, pp. 675–694. https://doi.org/10.1016/j.engfailanal.2007.10.001

    Google Scholar 

  36. Katifes, X., Structural Analysis, Fatigue Analysis and Optimization of Aircraft Wings, Edinburgh: Edinburgh Napier University, 2016. https://doi.org/10.13140/RG.2.1.1256.6647.

  37. Gürgen, S., Kuşhan, M.C., and Diltemiz, S.F., Fatigue failure in aircraft structural components, in Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, Butterworth-Heinemann, 2016, pp. 261–277. https://doi.org/10.1016/B978-0-12-800950-5.00013-2.

  38. Payne, A.O., The fatigue of aircraft structures, Eng. Fract. Mech., 1976, vol. 8, no. 1, pp. 157–203. https://doi.org/10.1016/0013-7944(76)90085-0

    Google Scholar 

  39. Kushan, M.C., Diltemiz, S.F., and Sackesen, I., Failure analysis of an aircraft propeller, Eng. Failure Anal., 2007, vol. 14, no. 8, pp. 1693–1700. https://doi.org/10.1016/j.engfailanal.2006.11.069

    Google Scholar 

  40. Hoeppner, D.W. and Arriscorreta, C.A., Exfoliation corrosion and pitting corrosion and their role in fatigue predictive modeling: State-of-the-art review, Int. J. Aerosp. Eng., 2012, vol. 2012, article no. 191879. https://doi.org/10.1155/2012/191879

    Google Scholar 

  41. Akdeniz, A., Aeroplane structural maintenance and corrosion prevention, Aircr. Eng. Aerosp. Technol., 1996, vol. 68, no. 3, pp. 3–7. https://doi.org/10.1108/eb037632

    Google Scholar 

  42. Waley, P.W., Corrosion damage tolerance methodology for C/KC-135 fuselage structure, Proc. NASA/FAA/DoD 5th Aging Aircraft Conference, Kissimmee, FL, 2001.

  43. Zhang, X., Jiang, T., and Feng, S., Corrosion behavior study based on airborne electromechanical products, Procedia Eng., 2011, vol. 15, pp. 4585–4589. https://doi.org/10.1016/j.proeng.2011.08.861

    Google Scholar 

  44. Rao, A.U., Vasu, V., Govindaraju, M., and Srinadh, K.S., Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review, Trans. Nonferrous Met. Soc. China, 2016, vol. 26, no. 6, pp. 1447–1471.

    Google Scholar 

  45. Wanhill, R. and Windisch, M., Corrosion and stress corrosion testing of aerospace vehicle structural alloys, in Corrosion and Stress Corrosion Testing of Aerospace Vehicle Structural Alloys, Cham: Springer, 2018, pp. 1–63. https://doi.org/10.1007/978-3-319-89530-7.

  46. Corrosion of Aluminum and Aluminum Alloys, Davis, J.R., Ed., Materials Park, OH: ASM Int., 1999.

    Google Scholar 

  47. Sukiman, N.L., Zhou, X., Birbilis, N., Hughes, A.E., Mol, J.M.C., Garcia, S.J., and Thompson, G.E., Durability and corrosion of aluminium and its alloys: overview, property space, techniques and developments, in Aluminium Alloys - New Trends in Fabrication and Applications, InTech, 2012, pp. 47–97. https://doi.org/10.5772/53752.

  48. Wanhill, R.J.H., Byrnes, R.T., and Smith, C.L., Stress corrosion cracking (SCC) in aerospace vehicles, in Stress Corrosion Cracking, Woodhead Publ., 2011, pp. 608–650. https://doi.org/10.1007/978-3-319-89530-7.

  49. Huda, Z. and Edi, P., Materials selection in design of structures and engines of supersonic aircrafts: A review, Mater. Des., 2013, vol. 46, pp. 552–560. https://doi.org/10.1016/j.matdes.2012.10.001

    Google Scholar 

  50. Kralya, V.O., Molyar, O.H., Trofimov, V.A., and Khimko, A.M., Defects of steel units of the high-lift devices of aircraft wings caused by fretting corrosion, Mater. Sci., 2010, vol. 46, no. 1, p. 108. https://doi.org/10.1007/s11003-010-9270-8

    Google Scholar 

  51. Voevodin, A.A., O’Neill, J.P., and Zabinski, J.S., Nanocomposite tribological coatings for aerospace applications, Surf. Coat. Technol., 1999, vol. 116, pp. 36–45. https://doi.org/10.1016/S0257-8972(99)00228-5

    Google Scholar 

  52. Dominy, J.A., Tribological design - the aerospace industry, in Tribology Series, Elsevier, 1989, vol. 14, pp. 15–21. https://doi.org/10.1016/S0167-8922(08)70176-7.

  53. Çeliktaş, E., Topuz, A., and Kazancı, Z., Friction and wear behaviors of aircraft brake linings material, Aircr. Eng. Aerosp. Technol., 2012, vol. 84, no. 5, pp. 279–286. https://doi.org/10.1108/00022661211255458

    Google Scholar 

  54. Ho, T.L., Peterson, M.B., and Ling, F.F., Effect of frictional heating on brake materials, Wear, 1974, vol. 30, no. 1, pp. 73–91. https://doi.org/10.1016/0043-1648(74)90058-1

    Google Scholar 

  55. Fan, S., Zhang, L., Xu, Y., Cheng, L., Tian, G., Ke, S., and Liu, H., Microstructure and tribological properties of advanced carbon/silicon carbide aircraft brake materials, Compos. Sci. Technol., 2008, vol. 68, no. 14, pp. 3002–3009. https://doi.org/10.1016/j.compscitech.2008.06.013

    Google Scholar 

  56. Koutsomichalis, A., Vaxevanidis, N., Petropoulos, G., Xatzaki, E., Mourlas, A., and Antoniou, S., Tribological coatings for aerospace applications and the case of WC–Co plasma spray coatings, Tribol. Ind., 2009, vol. 31, nos. 1–2, pp. 37–42.

    Google Scholar 

  57. Amos, T., Aerospace wear and corrosion-resistant coatings—a perspective, Aircr. Eng. Aerosp. Technol., 1996, vol. 68, no. 3, pp. 23–25. https://doi.org/10.1108/eb037635

    Google Scholar 

  58. Aouadi, S.M., Paudel, Y., Luster, B., Stadler, S., Kohli, P., Muratore, C., and Voevodin, A.A., Adaptive Mo 2 N/MoS 2/Ag tribological nanocomposite coatings for aerospace applications, Tribol. Lett., 2008, vol. 29, no. 2, pp. 95–103. https://doi.org/10.1007/s11249-007-9286-x

    Google Scholar 

  59. Mihalčová, J. and Rimár, M., Control of activity of aircraft engines by analysis of wear debris particles in terms of shape and size, Int. J. Eng. Res. Afr., 2015, vol. 18, pp. 136–143. https://doi.org/10.4028/www.scientific.net/JERA.18.136

    Google Scholar 

  60. Denape, J., Karama, M., and Delbé, K., Tribological Aspects in Modern Aircraft Industry, Trans Tech Publ., 2015.

  61. Voevodin, A.A. and Zabinski, J.S., Nanocomposite and nanostructured tribological materials for space applications, Compos. Sci. Technol., 2005, vol. 65, no. 5, pp. 741–748. https://doi.org/10.1016/j.compscitech.2004.10.008

    Google Scholar 

  62. Eller, D., Friction, freeplay and flutter of manually controlled aircraft, Proc. Int. Forum on Aeroelasticity and Structural Dynamics, Stockholm, 2007.

  63. Fusaro, R.L., Tribology Needs for Future Space and Aeronautical Systems, NASA Technical Memorandum 104525, 1991.

  64. Buckley, D.H., Tribological Systems as Applied to Aircraft Engines, NASA Technical Memorandum 86965, 1985.

  65. Zhang, Y., Jin, W., Hao, X., Qiu, F., and Zhao, Q., Improving elevated-temperature strength of an Al–Mn–Si alloy by strain-induced precipitation, Metals, 2018, vol. 8, no. 6, p. 446. https://doi.org/10.3390/met8060446

    Google Scholar 

  66. Liu, K. and Chen, X.G., Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening, Mater. Des., 2015, vol. 84, pp. 340–350. https://doi.org/10.1016/j.matdes.2015.06.140

    Google Scholar 

  67. Huda, Z., Zaharinie, T., and Min, G.J., Temperature effects on material behavior of aerospace aluminum alloys for subsonic and supersonic aircraft, J. Aerosp. Eng., 2010, vol. 23, no. 2, pp. 124–128. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000015

    Google Scholar 

  68. Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures, Kaufman, J.G., Ed., Materials Park, OH: ASM Int., 1999.

    Google Scholar 

  69. Gangil, N., Maheshwari, S., and Siddiquee, A.N., Novel use of distribution facilitators and time-temperature range for strengthening in surface composites on AA7050-T7451, Metallogr., Microstruct., Anal., 2018, vol. 7, no. 5, pp. 561–577. https://doi.org/10.1007/s13632-018-0474-x

    Google Scholar 

  70. Lai, J., Zhang, Z., and Chen, X.G., The thermal stability of mechanical properties of Al-B4C composites alloyed with Sc and Zr at elevated temperatures, Mater. Sci. Eng., A, 2012, vol. 532, pp. 462–470. https://doi.org/10.1016/j.msea.2011.11.013

    Google Scholar 

  71. Peel, C.J. and Gregson, P.J., Design requirements for aerospace structural materials, in High Performance Materials in Aerospace, Dordrecht: Springer, 1995, pp. 1–48. https://doi.org/10.1007/978-94-011-0685-6_1.

  72. Seikh, A.H., Baig, M., and Ammar, H.R., Corrosion behavior of nanostructure Al-Fe alloy processed by mechanical alloying and high frequency induction heat sintering, Int. J. Electrochem. Sci., 2015, vol. 10, pp. 3054–3064. https://doi.org/10.3390/coatings9100686

    Google Scholar 

  73. Baig, M., Ammar, H.R., and Seikh, A.H., Thermo-mechanical responses of nanocrystalline Al-Fe alloy processed using mechanical alloying and high frequency heat induction sintering, Mater. Sci. Eng., A, 2016, vol. 655, pp. 132–141.

    Google Scholar 

  74. Lee, I.S., Kao, P.W., and Ho, N.J., Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing, Intermetallics, 2008, vol. 16, no. 9, pp. 1104–1108. https://doi.org/10.1016/j.intermet.2008.06.017

    Google Scholar 

  75. Barbaux, Y. and Pons, G., New rapidly solidified aluminium alloys for elevated temperature applications on aerospace structures, J. Phys. IV, 1993, vol. 3, no. C7, p. C7-191.

    Google Scholar 

  76. Rainen, R.A. and Ekvall, J.C., Elevated-temperature Al alloys for aircraft structure, JOM, 1988, vol. 40, no. 5, pp. 16–18.

    Google Scholar 

  77. Shafiei-Zarghani, A., Kashani-Bozorg, S.F., and Zarei-Hanzaki, A., Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing, Mater. Sci. Eng., A, 2009, vol. 500, nos. 1–2, pp. 84–91. https://doi.org/10.1016/j.msea.2008.09.064

    Google Scholar 

  78. Mohanakumara, K.C., Rajashekar, H., Ghanaraja, S., and Ajitprasad, S.L., Development and mechanical properties of SiC reinforced cast and extruded Al based metal matrix composite, Procedia Mater. Sci., 2014, vol. 5, pp. 934–943. https://doi.org/10.1016/j.mspro.2014.07.381

    Google Scholar 

  79. Parvin, N., Assadifard, R., Safarzadeh, P., Sheibani, S., and Marashi, P., Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying, Mater. Sci. Eng., A, 2008, vol. 492, nos. 1–2, pp. 134–140. https://doi.org/10.1016/j.msea.2008.05.004

    Google Scholar 

  80. Veličković, S., Garić, S., Stojanović, B., and Vencl, A., Tribological properties of aluminium matrix nanocomposites, Appl. Eng. Lett., 2016, vol. 1, no. 3, pp. 72–79.

    Google Scholar 

  81. Yuvaraj, N. and Aravindan, S., Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization, J. Mater. Res. Technol., 2015, vol. 4, no. 4, pp. 398–410. https://doi.org/10.1016/j.jmrt.2015.02.006

    Google Scholar 

  82. Patidar, D. and Rana, R.S., Effect of B4C particle reinforcement on the various properties of aluminium matrix composites: a survey paper, Mater. Today: Proc., 2017, vol. 4, no. 2, pp. 2981–2988. https://doi.org/10.1016/j.matpr.2017.02.180

    Google Scholar 

  83. Mohanakumara, K.C., Rajashekar, H., Ghanaraja, S., and Ajitprasad, S.L., Development and mechanical properties of SiC reinforced cast and extruded Al based metal matrix composite, Procedia Mater. Sci., 2014, vol. 5, pp. 934–943. https://doi.org/10.1016/j.mspro.2014.07.381

    Google Scholar 

  84. Ozben, T., Kilickap, E., and Cakır, O., Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC, J. Mater. Process. Technol., 2008, vol. 198, nos. 1–3, pp. 220–225. https://doi.org/10.1016/j.jmatprotec.2007.06.082

    Google Scholar 

  85. Selvaduray, G. and Sheet, L., Aluminium nitride: review of synthesis methods, Mater. Sci. Technol., 1993, vol. 9, no. 6, pp. 463–473. https://doi.org/10.1179/mst.1993.9.6.463

    Google Scholar 

  86. Vani, V.V. and Chak, S.K., The effect of process parameters in aluminum metal matrix composites with powder metallurgy, Manuf. Rev., 2018, vol. 5, p. 7. https://doi.org/10.1051/mfreview/2018001

    Google Scholar 

  87. Wang, Z., Song, M., Sun, C., Xiao, D., and He, Y., Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al–Cu alloy composites, Mater. Sci. Eng., A, 2010, vol. 527, nos. 24–25, pp. 6537–6542. https://doi.org/10.1016/j.msea.2010.07.017

    Google Scholar 

  88. Ma, P., Jia, Y., Konda Gokuldoss, P., Yu, Z., Yang, S., Zhao, J., and Li, C., Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al–12Si composites, Metals, 2017, vol. 7, no. 9, p. 359. https://doi.org/10.3390/met7090359

    Google Scholar 

  89. Khraisat, W. and Abu Jadayil, W., Strengthening aluminum scrap by alloying with iron, Jordan J. Mech. Ind. Eng., 2010, vol. 4, pp. 372–377.

    Google Scholar 

  90. Fathy, A., El-Kady, O., and Mohammed, M.M., Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route, Trans. Nonferrous Met. Soc. China, 2015, vol. 25, no. 1, pp. 46–53. https://doi.org/10.1016/S1003-6326(15)63577-4

    Google Scholar 

  91. Talib, R.J., Selamat, M.A., Rusila, Z.J., and Ismail, M.F., Friction and wear characteristics Cu-based P/M brake friction materials with addition of Fe and C, Appl. Mech. Mater., 2014, vols. 661–662, pp. 21–26. https://doi.org/10.4028/www.scientific.net/AMM.661.21

    Google Scholar 

  92. Froes, F.S., Senkov, O.N., and Baburaj, E.G., Synthesis of nanocrystalline materials-an overview, Mater. Sci. Eng., A, 2001, vol. 301, no. 1, pp. 44–53.

    Google Scholar 

  93. Mukhopadhyay, D.K., Suryanarayana, C., and Froes, F.S., Structural evolution in mechanically alloyed Al–Fe powders, Metall. Mater. Trans. A, 1995, vol. 26, no. 8, pp. 1939–1946. https://doi.org/10.1007/BF02670665

    Google Scholar 

  94. Khorrami, M.S., Samadi, S., Janghorban, Z., and Movahedi, M., In-situ aluminum matrix composite produced by friction stir processing using Fe particles, Mater. Sci. Eng., A, 2015, vol. 641, pp. 380–390. https://doi.org/10.1016/j.msea.2015.06.071

    Google Scholar 

  95. Eftekhari, M., Movahedi, M., and Kokabi, A.H., Microstructure, strength, and wear behavior relationship in Al–Fe3O4 nanocomposite produced by multi-pass friction stir processing, J. Mater. Eng. Perform., 2017, vol. 26, no. 7, pp. 3516–3530. https://doi.org/10.1007/s11665-017-2752-1

    Google Scholar 

  96. Najafi, A., Movahedi, M., and Yarandi, A.S., Properties—microstructure relationship in Al-Fe in situ composite produced by friction stir processing, Proc. Inst. Mech. Eng., Part L, 2018, vol. 233, no. 10, p. 1464420718803752. https://doi.org/10.1177/1464420718803752

    Google Scholar 

  97. Esfahani, M.M., Manesh, H.D., Esmailzadeh, M., and Roshanaei, E., Microstructure and wear characteristics of 1050Al/Fe surface composites by friction stir processing, Mater. Res. Express, 2018, vol. 5, no. 12, p. 126518. https://doi.org/10.1088/2053-1591/aae145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Dwivedi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, P., Siddiquee, A.N. & Maheshwari, S. Issues and Requirements for Aluminum Alloys Used in Aircraft Components: State of the Art. Russ. J. Non-ferrous Metals 62, 212–225 (2021). https://doi.org/10.3103/S1067821221020048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821221020048

Navigation