Skip to main content
Log in

Nanoscale Nickel-Containing Powders for Use in CO and NO2 Gas Sensors

  • NANOSTRUCTURED MATERIALS AND FUNCTIONAL COATINGS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This paper investigates the physicochemical characteristics and gas-sensitivity mechanisms of nickel oxide (NiO) and nickel ferrite (NiFe2O4) obtained by levitation-jet synthesis LJS). Properties of synthesized materials were examined using various spectroscopic methods. XPS showed that the presence of Ni3+ ions in samples reduced significantly with an increase in the specific surface area of the powders and a decrease in the average diameter of their particles. In this regard, it can be concluded that the number of uncompensated Ni2+ vacancies in such samples also decreases and the concentration of O2– vacancies, on the contrary, increases significantly. The Raman spectra of nanoscale NiO lacked a magnon band, which is usually observed at v = 1500 cm–1, whereas the spectrum of nanoferrite sample had a pronounced 2M band, which indicates an increase in spin correlation. According to the analysis of UV spectra of the samples, there is an increase in reflectivity values with an increase in wavelength for large nanoparticles when compared to the corresponding values for small particles. In this regard, we suggested that Ni-based oxide nanoparticles are semiconductors with an indirect transition to band-gap energy, and this is in sharp contrast to the data obtained earlier by other researchers. The gas sensitivity of nanoscale powders was investigated in relation to carbon monoxide and nitrogen dioxide at operating temperatures of 350–500°C. An evaluation of the results made it possible to conclude that the operating characteristics of the sensors that we propose are superior in a number of parameters to the similar characteristics of sensors made of commercial powders, as well as of powders obtained by other synthetic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Rumyantseva, M.N., Kovalenko, V.V., Gas’kov, A.M., and Pagnier, T., Metal-oxide based nanocomposites as materials for gas sensors, Russ. J. Gen. Chem., 2008, vol. 78, no. 5, pp. 1081–1092. https://doi.org/10.1134/S1070363208050411

    Article  CAS  Google Scholar 

  2. Dey, A., Semiconductor metal oxide gas sensors: A review, Mater. Sci. Eng., B, 2018, vol. 229, pp. 206–217. https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  3. Williams, D.E., Semiconducting oxides as gas-sensitive resistors, Sens. Actuators, B, 1999, vol. 57, nos. 1–3, pp. 1–16. https://doi.org/10.1016/S0925-4005(99)00133-1

    Article  CAS  Google Scholar 

  4. Binions, R., Afonja, A., Dungey, S., Lewis, D.E., Parkin, I.P., and Williams, D.E., Discrimination effects in zeolite modified metal oxide semiconductor gas sensors, IEEE Sens. J., 2011, vol. 11, no. 5, pp. 1145–1151. https://doi.org/10.1109/JSEN.2010.2084079

    Article  CAS  Google Scholar 

  5. Lee, P.Y., Ishizaka, K., Suematsu, H., Jiang, W., and Yatsui, K., Magnetic and gas sensing property of nanosized NiFe2O4 powders synthesized by pulsed wire discharge, J. Nanopart. Res., 2006, vol. 8, no. 1, pp. 29–35. https://doi.org/10.1007/s11051-005-5427-z

    Article  CAS  Google Scholar 

  6. Ju, D., Xu, H., Xu, Q., Gong, H., Qiu, Z., and Guo, J., High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors, Sens. Actuators, B, 2015, vol. 215, pp. 39–44. https://dx.doi.016/j.snb.2015.03.015.

  7. Arshak, K. and Gaidan, I., NiO/Fe2O3 polymer thick films as room temperature gas sensors, Thin Solid Films, 2006, vol. 495, nos. 1–2, pp. 286–291. https://doi.org/10.1016/j.tsf.2005.08.298

    Article  CAS  Google Scholar 

  8. Darshane, S.L., Suryavanshi, S.S., and Mulla, I.S., Nanostructured nickel ferrite: A liquid petroleum gas sensor, Ceram. Int., 2009, vol. 35, no. 5, pp. 1793–1797. https://doi.org/10.1016/j.ceramint.2008.10.013

    Article  CAS  Google Scholar 

  9. Ortega, D., Kuznetsov, M.V., Morozov, Yu.G., Belousova, O.V., and Parkin, I.P., Thermal relaxation and collective dynamics of interacting aerosol-generated hexagonal NiFe2O4 nanoparticles, Phys. Chem. Chem. Phys., 2013, vol. 15, no. 48, pp. 20830–20838. https://doi.org/10.1039/c3cp53981d

    Article  CAS  Google Scholar 

  10. Chen, N.-S., Yang, X.-J., Liu, E.-S., and Huang, J.-L., Reducing gas-sensing properties of ferrite compounds MFe2O4 (M = Cu, Zn, Cd and Mg), Sens. Actuators, B, 2000, vol. 66, no. 1–3, pp. 178–180. https://doi.org/10.1016/S0925-4005(00)00368-3

    Article  CAS  Google Scholar 

  11. Chen, D.-H. and He, X.-R., Synthesis of nickel ferrite nanoparticles by sol-gel method, Mater. Res. Bull., 2001, vol. 36, nos. 7–8, pp. 1369–1377. https://doi.org/10.1016/S0025-5408(01)00620-1

    Article  CAS  Google Scholar 

  12. Liu, J., He, H., Jin, X., Hao, Z., and Xu, Z., Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties, Mater. Res. Bull., 2001, vol. 36, nos. 13–14, pp. 2357–2363. https://doi.org/10.1016/S0025-5408(01)00722-X

    Article  CAS  Google Scholar 

  13. Suematsu, H., Ishizaka, K., Kinemuchi, Y., Suzuki, T., Jiang, W., and Yatsui, K., Novel critical temperature resistor of sintered Ni-Fe-O nanosized powders, J. Mater. Res., 2004, vol. 19, no. 4, pp. 1011–1014. https://doi.org/10.1557/JMR.2004.0131

    Article  CAS  Google Scholar 

  14. Ortega, D., Kuznetsov, M.V., Morozov, Yu.G., Belousova, O.V., and Parkin, I.P., Thermal relaxation and collective dynamics of interacting aerosol-generated hexagonal NiFe2O4 nanoparticles, Phys. Chem. Chem. Phys., 2013, vol. 15, no. 48, pp. 20830–20838. https://doi.org/10.1039/c3cp53981d

    Article  CAS  Google Scholar 

  15. Gen, M.Ya. and Miller, A.V., Levitation method for producing ultrafine metal powders, Poverkhnost, 1983, no. 2, pp. 150–154.

  16. Kondrat'eva, T.A., Morozov, Y.G., and Chernov, E.A., Effect of conditions of manufacture on the properties of ultrafine nickel powder, Sov. Powder Metall. Met. Ceram., 1987, vol. 26, no. 10, pp. 793–795. https://doi.org/10.1007/BF00794359

    Article  Google Scholar 

  17. Krasnov, A.P., Morozov, Y.G., and Chernov, E.A., Characteristic features of the vaporization mechanism in the crucible-free production of aerosol particles, Powder Technol., 1994, vol. 81, no. 1, pp. 93–98. https://doi.org/10.1016/0032-5910(94)02871-0

    Article  CAS  Google Scholar 

  18. Morozov, Y.G., Belousova, O.V., Kuznetsov, M.V., Ortega, D., and Parkin, I.P., Electric field-assisted levitation-jet aerosol synthesis of Ni/NiO nanoparticles, J. Mater. Chem., 2012, vol. 22, no. 22, pp. 11214–11223. https://doi.org/10.1039/c2jm31233f

    Article  CAS  Google Scholar 

  19. Binions, R., Davies, H., Afonja, A., Dungey, S., Lewis, D., Williams, D.E., and Parkin, I.P., Zeolite-modified discriminating gas sensors, J. Electrochem. Soc., 2009, vol. 156, no. 3, pp. J46–J51. https://doi.org/10.1149/1.3065436

    Article  CAS  Google Scholar 

  20. Peveler, W.J., Binions, R., Hailes, S.M.V., and Parkin, I.P., Detection of explosive markers using zeolite modified gas sensors, J. Mater. Chem. A, 2013, vol. 1, no. 17, pp. 2613–2620. https://doi.org/10.1039/c2ta01027e

    Article  CAS  Google Scholar 

  21. Hernández, P.T., Naik, A.J.T., Newton, E.J., Hailes, S.M.V., and Parkin, I.P., Assessing the potential of metal oxide semiconducting gas sensors for illicit drug detection markers, J. Mater. Chem. A, 2014, vol. 2, no. 23, pp. 8952–8960. https://doi.org/10.1039/c4ta00357h

    Article  CAS  Google Scholar 

  22. Costa, A.C.F.M., Lula, R.T., Kiminami, R.H.G.A., Gama, L.F.V., de Jesus, A.A., and Andrade, H.M.C., Preparation of nanostructured NiFe2O4 catalysts by combustion reaction, J. Mater. Sci., 2006, vol. 41, no. 15, pp. 4871–4875.https://doi.org/10.1007/s10853-006-0048-1

    Article  CAS  Google Scholar 

  23. Madhu, G. and Biju, V., Nanostructured amorphous nickel oxide with enhanced anti- oxidant activity, J. Alloys Compd., 2015, vol. 637, pp. 62–69. https://doi.org/10.1016/j.jallcom.2015.02.157

  24. Biju, V., Ni 2p X-ray photoelectron spectroscopy study of nanostructured nickel oxide, Mater. Res. Bull., 2007, vol. 42, no. 5, pp. 791–796. https://doi.org/10.1016/j.materresbull.2006.10.009

  25. Mironova-Ulmane, N., Kuzmin, A., Sildos, I., and Pärs, M., Polarization dependent Raman study of single-crystal nickel oxide, Cent. Eur. J. Phys., 2011, vol. 9, no. 4, pp. 1096–1099. https://doi.org/10.2478/s11534-010-0130-9

    Article  CAS  Google Scholar 

  26. Tadic, M., Panjan, M., Markovic, D., Stanojevic, B., Jovanovic, D., Milosevic, I., and Spasojevic, V., NiO core-shell nanostructure with ferromagnetic-like behavior at room temperature, J. Alloys Compd., 2014, vol. 586, no. 1, Suppl., pp. S322–S325. https://doi.org/10.1016/j.jallcom.2012.10.166

    Article  CAS  Google Scholar 

  27. Simmons, E.L., Diffuse reflectance spectroscopy: a comparison of the theories, Appl. Opt., 1975, vol. 14, no. 6, pp. 1380–1386. https://doi.org/10.1364/AO.14.001380

    Article  CAS  Google Scholar 

  28. Rehman, S., Mumtaz, A., and Hasanain, S.K., Size effects on the magnetic and optical properties of CuO nanoparticles, J. Nanopart. Res., 2011, vol. 13, no. 6, pp. 2497–2507. https://doi.org/10.1007/s11051-010-0143-8

    Article  CAS  Google Scholar 

  29. Lin, H., Huang, C.P., Li, W., Ismat Shah, S., and Tseng, Y.-H., Size dependency of nano-crystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol, Appl. Catal., B, 2006, vol. 68, nos. 1–2, pp. 1–11. https://doi.org/10.1016/j.apcatb.2006.07.018

    Article  CAS  Google Scholar 

  30. Semiconductor Gas Sensors, Jaaniso, R. and Kian Tan, O., Eds., Oxford: Woodhead Publ., 2013.

  31. Gurlo, A. and Riedel, R., In situ and operando spectroscopy for assessing mechanisms of gas sensing, Angew. Chem., 2007, vol. 46, pp. 3826–3848. https://doi.org/10.1002/anie.200602597

    Article  CAS  Google Scholar 

  32. Chu, X., Dongli, J., and Chenmou, Z., The preparation and gas-sensing properties of NiFe2O4 nanocubes and nanorods, Sens. Actuators, B, 2007, vol. 123, no. 2, pp. 793–797. https://doi.org/10.1016/j.snb.2006.10.020

    Article  CAS  Google Scholar 

  33. Sutka, A. and Gross, A., Spinel ferrite oxide semiconductor gas sensors, Sens. Actuators, B, 2016, vol. 222, pp. 95–105. https://doi.org/10.1016/j.snb.2015.08.027

    Article  CAS  Google Scholar 

  34. Yang, L., Xie, Y., Zhao, H., Wu, X., and Wang, Y., Preparation and gas-sensing properties of NiFe2O4 semiconductor materials, Solid-State Electron., 2005, vol. 49, no. 6, pp. 1029–1033. https://doi.org/10.1016/j.sse.2005.03.022

    Article  CAS  Google Scholar 

  35. Choi, J., Byun, J., and Sub, S., Chemical influence of grain size on gas-sensing properties of chemiresistive p‑type NiO nanofibers, Sens. Actuators, B, 2016, vol. 227, pp. 149–156. https://doi.org/10.1016/j.snb.2015.12.014

    Article  CAS  Google Scholar 

  36. Kruefu, V., Wisitsoraat, A., Phokharatkul, D., Tuantranont, A., and Phanichphant, S., Chemical enhancement of p-type gas-sensing performances of NiO nanoparticles prepared by precipitation with RuO2 impregnation, Sens. Actuators, B, 2016, vol. 236, no. 2, pp. 466–473. https://doi.org/10.1016/j.snb.2016.06.028

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Kuznetsov, A. V. Safonov, D. A. Bobreshov, O. V. Belousova or Iu. G. Morozov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Lazarev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, M.V., Safonov, A.V., Bobreshov, D.A. et al. Nanoscale Nickel-Containing Powders for Use in CO and NO2 Gas Sensors. Russ. J. Non-ferrous Metals 61, 583–591 (2020). https://doi.org/10.3103/S1067821220050089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220050089

Keywords:

Navigation