Skip to main content
Log in

Selective Extraction of Li, Rb, and Cs and Precipitation of Lithium Carbonate Directly from Lithium Porcelain Stone

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The expected increase in demand for alkali metal raises a concern over the difficulty in extracting Li, Rb, and Cs from hard rock ores. A four-step process is discussed to extract alkali metal from lithium porcelain stone. The process consists of roasting, leaching, evaporation and purification of lixivium, and precipitation of lithium salts. Two types of additives are used to enhance selective conversion into salts. The Li, Rb, Cs extraction efficiencies are determined to be 98.70, 97.27, 98.40%. An Na2SO4/CaCl2/ore mass ratio of 0.2/0.2/1 at 850°C for 60 min is used for the roasting step. Analysis of calcine and leach residue shows the cation ions from the reagents promote highly-chemo selective ion-exchange extraction of the alkali metals in the ores. After this process, the Li+ in lixivium is concentrated from 3.43 to 9.50 g/L by evaporation. A controlled amount of H2O2, NaOH, and Li3PO4 is added to the lixivium to remove the impurities. Precipitation of 94.09% of the Li in the purified solution by Na2CO3 is achieved. Further precipitation using Na3PO4 · 12H2O is done, leaving a solution from which Rb, Cs could be recovered. This proves the process is possible and practical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Bogale, T., Fidele, M., Boris, A., and Laurence, D., The beneficiation of lithium minerals from hard rock ores: A review, Miner. Eng., 2019, vol. 131, pp. 172–184.

    Google Scholar 

  2. U.S. Geological Survey, Mineral Commodity Summaries 2018, U.S. Geological Survey, 2018. https://doi.org/10.3133/70194932

  3. Zheng, S.L., Li, P., Tian, L., Cao, Z.M., Zhang, T.G., Chen, Y.G., and Zhang, Y., A chlorination roasting process to extract rubidium from distinctive kaolin ore with alternative chlorinating reagent, Int. J. Miner. Process., 2016, vol. 157, p. 21.

    Article  CAS  Google Scholar 

  4. Meshram, P., Pandey, B.D., and Mankhand, T.R., Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review, Hydrometallurgy, 2014, vol. 150, pp. 192–208.

    Article  CAS  Google Scholar 

  5. Grosjean, C., Miranda, P.H., Perrin, M., and Poggi, P., Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable Sustainable Energy Rev., 2012, vol. 16, no. 3, pp. 1735–1744.

    Article  Google Scholar 

  6. Kuang, G., Li, H., Hu, S., Jin, R., Liu, S.J., and Guo, H., Recovery of aluminium and lithium from gypsum residue obtained in the process of lithium extraction from lepidolite, Hydrometallurgy, 2015, vol. 157, pp. 214–218.

    Article  CAS  Google Scholar 

  7. Chen, Y., Tian, Q.Q., Chen, B.Z., Shi, X.C., and Liao, T.S., Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy, 2011, vol. 109, no. 1, pp. 43–46.

    Article  CAS  Google Scholar 

  8. Vieceli, N., Nogueira, C.A., Pereira, M.F.C., Dias, A.P.S., Durão, F.O., Guimarães, C., and Margarido, F., Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 2017, vol. 102, pp.1–14.

    Article  CAS  Google Scholar 

  9. Liu, Y.L. and Liu, J., The flotation process of lepidolite in Jiangxi Province in China, Adv. Mater. Res., 2014, vol. 4, pp. 1033–1034.

    Article  Google Scholar 

  10. Jandová, J., Dvořák, P., and Hong, N.V., Processing of zinnwaldite waste to obtain Li2CO3, Hydrometallurgy, 2010, vol. 103, no. 1, pp. 12–18.

    Article  Google Scholar 

  11. Siame, E. and Pascoe, R.D., Extraction of lithium from micaceous waste from China clay production, Miner. Eng., 2011, vol. 24, no. 14, pp. 1595–1602.

    Article  CAS  Google Scholar 

  12. Zhou, J.E., Liu, K., Dong, W.X., Bao, Q.F., Zhao, T.G., and Wang, Y.Q., Effects of CaO–Li2O–K2O–Na2O fluxing agents on the properties of porcelain ceramic tiles, Key Eng. Mater., 2015, vol. 655, pp. 258–262.

    Article  Google Scholar 

  13. He, M.S., Huang, X., and Zou, G.S., Characteristics, Utilization Status and Suggestions of Lithium Containing Porcelain Stone (Soil) Mineral Resources in Jiangxi Province, China Non-Met.Miner. Ind., 2014, vol. 6, pp. 41–43.

    Google Scholar 

  14. Zhong, B., Li, H.Z., Liu, J.Y., Wang, J.Q., Nan, J.X., and Wu, J.F., CN Patent 109055723A, 2018.

  15. Wu, X.M., Zhou, M.J., Luo, X.C., and Zhou, J.T., The metallogenic conditions and prospecting potential of lithium and rare metals in northwestern Jiangxi, East China Geol., 2016, vol. 4, no. 37, pp. 275–283.

    Google Scholar 

  16. Maslennikova, G.N., Platov, Y.T., and Zhekisheva, S.Z., Porcelain stone–a nontraditional type of mineral raw material, Glass Ceram., 1993, vol. 50, nos. 11–12, pp. 472–475.

    Article  Google Scholar 

  17. Yan, Q.X., Li, X.H., Wang, Z.X., Wu, X.F., Wang, J.X., Guo, H.J., Hu, Q.Y., Peng, W.J., and Wu, X.F., Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, no. 7, pp. 1753–1759.

    Article  CAS  Google Scholar 

  18. Luong, V.T., Dong, J.K., An, J.W., Dao, D.A., Kim, M.J., and Tran, T., Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 2014, vol. 141, no. 2, pp. 8–16.

    Article  CAS  Google Scholar 

  19. Yan, Q.X., Li, X.H., Wang, Z.X., Wu, X.F., Guo, H.J., Hu, Q.Y., Peng, W.J., and Wang, J.X., Extraction of valuable metals from lepidolite, Hydrometallurgy, 2012, vols. 117–118, no. 4, pp. 116–118.

    Article  Google Scholar 

  20. Wu, X.F., Study on the process and mechanism of lithium extraction from lepidolite in Yichun, Doctoral Dissertation, Central South University, 2012.

  21. Hien-Dinh, T.T., Luong, V.T., Gieré, R., and Tran, T., Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 2015, vol. 153, pp 154–159.

    Article  CAS  Google Scholar 

  22. Wang, F.B., Study on the preparation of battery grade lithium carbonate from lepidolite leaching solution, Doctoral Dissertation, Jiangxi University of Science and Technology, 2013.

  23. Jie, H.B., Study on the extraction of lithium carbonate from lepidolite, Doctoral Dissertation, East China University of Science and Technology, 2012.

  24. Chen, Z.L., Bian, S., Sun, Y.H., and Huang, C., Summary of trial operation of phosphate removing calcium and magnesium brine refining, Chlor-Alkali Ind., 2016, vol. 52, no. 3, pp. 8–10.

    CAS  Google Scholar 

  25. Chen, N., Zhou, E., Duan, D.P., and Yang, X.M., Mechanochemistry synthesis of high purity lithium carbonate, Korean J. Chem. Eng., 2017, vol. 34, no. 10, pp. 2748–2755.

    Article  CAS  Google Scholar 

  26. Peng, C., Liu, F.P., Wang, Z.L., Wilson, B.P., and Lundström, M., Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system, J. Power Sources, 2019, vol. 415, pp. 179–188.

    Article  CAS  Google Scholar 

  27. Liu, C.W., Lin, J., Cao, H.B., Zhang, Y., and Sun, Z., Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Cleaner Prod., 2019, vol. 228, pp. 801–813.

    Article  CAS  Google Scholar 

  28. Chinese National Standard GB/T 11075-2013: Battery Grade Lithium Carbonate, 2013.

  29. Li, H., Controlled synthesis and catalytic properties of lithium phosphate micro/nano particles, Doctoral Dissertation, Nanjing University of Science and Technology, 2015.

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (No. 51564018 and No. 51764018), the Jiangxi Provincial Key Laboratory of Flash Green Developmet and Recycling (20193BCD40019), and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhou Hu.

Ethics declarations

The authors claim that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinliang Wang, Hu, H. & Ji, B. Selective Extraction of Li, Rb, and Cs and Precipitation of Lithium Carbonate Directly from Lithium Porcelain Stone. Russ. J. Non-ferrous Metals 61, 143–152 (2020). https://doi.org/10.3103/S1067821220020133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220020133

Keywords:

Navigation