Skip to main content
Log in

Removal of rare earth elements and thorium from LiCl–KCl molten salt by phosphate precipitation method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The removal of rare earth fission products and thorium from LiCl–KCl system is of great significance to purification and recovery LiCl–KCl during pyroprocessing flow. The removal efficiency of rare earth elements or thorium was investigated by adding precipitant Li3PO4 in LiCl–KCl molten salt. The characteristics of precipitation products were determined by XRD, SEM, and EDS analysis and the removal ratios of rare earth elements were compared under different conditions. The removal ratio of Th and rare earth elements (except Eu) can reach 95% when adding a slightly excess of Li3PO4 at 823 K. About 50% LiCl–KCl was entrained after precipitation reaction in mixture salt containing 20wt%ThF4, which showed the potential challenges to achieve the removal of Th and rare earth and the recovery of LiCl–KCl salt in the actual process. It is expected that the combination of precipitation and distillation method can improve to efficiently recover the LiCl–KCl mixed salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ming X, Ting L, Yao C (2023) Policies, status quo and trend of integrated energy system in China. In: 2023 5th Asia energy and electrical engineering symposium (AEEES). IEEE, pp 1771–1777

  2. Rabbi MF, Popp J, Máté D, Kovács S (2022) Energy security and energy transition to achieve carbon neutrality. Energies 15(21):8126

    Article  CAS  Google Scholar 

  3. Inoue T, Koch L (2008) Development of pyroprocessing and its future direction. Nucl Eng Technol 40(3):183–190

    Article  CAS  Google Scholar 

  4. Goff KM, Simpson MF (2009) Dry processing of used nuclear fuel. Idaho National Lab. (INL), Idaho Falls

  5. Ye G, Zhang H (2009) A review on the development of spent nuclear fuel reprocessing and its related radiochemistry. Prog Chem 23(7):1289 (in Chinese)

    Google Scholar 

  6. Riley BJ, McFarlane J, DelCul GD, Vienna JD, Contescu CI, Forsberg CW (2019) Molten salt reactor waste and effluent management strategies: a review. Nucl Eng Des 345:94–109

    Article  CAS  Google Scholar 

  7. Fredrickson GL, Cao GP, Gakhar R, Yoo TS (2018) Molten salt reactor salt processing–technology status. Idaho National Lab. (INL), Idaho Falls

  8. Uhlir J (2009) Reprocessing of molten salt reactor fuel. Trans Am Nucl Soc 100:501–502

    Google Scholar 

  9. Uhlíř J, Mareček M (2009) Fluoride volatility method for reprocessing of LWR and FR fuels. J Fluor Chem 130(1):89–93

    Article  Google Scholar 

  10. Westphal BR, Marsden KC, Price JC, Laug DV (2008) On the development of a distillation process for the electrometallurgical treatment of irradiated spent nuclear fuel. Nucl Eng Technol 40(3):163

    Article  CAS  Google Scholar 

  11. Vandarkuzhali S, Chandra M, Ghosh S, Samanta N, Nedumaran S, Reddy BP, Nagarajan K (2014) Investigation on the electrochemical behavior of neodymium chloride at W, Al and Cd electrodes in molten LiCl–KCl eutectic. Electrochim Acta 145:86–98

    Article  CAS  Google Scholar 

  12. Yoo TS, Frank SM, Simpson MF, Hahn PA, Battisti TJ, Phongikaroon S (2010) Salt-zeolite ion-exchange equilibrium studies for a complete set of fission products in molten LiCl–KCl. Nucl Technol 171(3):306–315

    Article  CAS  Google Scholar 

  13. Sun L, Niu Y, Hu CW, Wang CY, Dou Q, Li QN (2019) Influence of molten salt composition on the fluorination of UF4. J Fluor Chem 218:99–104

    Article  CAS  Google Scholar 

  14. Sun LX, Niu YS, Hu CW, Wang XH, Zhao ZQ, Chen JG, Cai XZ, Fu HY, Dou Q, Li QN (2022) Behavior and distribution of nuclides in the fluoride volatility process of uranium containing molten salt fuel. J Fluor Chem 261:110016

    Article  Google Scholar 

  15. Geng JX, Yang Y, Fu HY, Luo Y, Dou Q, Li QN (2021) Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt. Nucl Sci Tech 32(1):3

    Article  CAS  Google Scholar 

  16. Luo Y, Dai JX, Dou Q, Fu HY, Li QN (2022) Influence of free F- anions on evaporation behavior of molten salts containing ZrF4. J Nucl Mater 561:153550

    Article  CAS  Google Scholar 

  17. Zhou JH, Geng JX, Luo Y, Cui RR, Zhao ZQ, Fu HY, Dou Q, Wang XH, Li WX, Chen JG, Li QN (2021) Evaporation behavior of 2LiF–BeF2–ZrF4 molten salt with irradiated nuclear fuel. RSC Adv 11(42):26284–26290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang F, Ji N, Huang W, Fu HY (2023) The electrochemical behavior of neodymium (III) in FLiNaK molten salt on Pt cathode. J Electrochem Soc 169(10):102505

    Article  Google Scholar 

  19. Wang X, Huang W, Gong Y, Jiang F, Zheng HY, Zhu TJ, Long DW, Li QN (2016) Electrochemical behavior of Th (IV) and its electrodeposition from ThF4-LiCl–KCl melt. Electrochim Acta 196:286–293

    Article  CAS  Google Scholar 

  20. Uozumi K, Iizuka M, Omori T (2021) Removal of rare-earth fission products from molten chloride salt used in pyroprocessing by precipitation for consolidation into glass-bonded sodalite waste form. J Nucl Mater 547:152784

    Article  CAS  Google Scholar 

  21. Cho YZ, Park GH, Yang HC, Han DS, Lee HS, Kim IT (2009) Minimization of eutectic salt waste from pyroprocessing by oxidative precipitation of lanthanides. J Nucl Sci Technol 46(10):1004–1011

    Article  CAS  Google Scholar 

  22. Eun HC, Choi JH, Kim NY, Lee TK, Han SY, Lee KR, Park HS, Ahn DH (2010) A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides. J Nucl Mater 480:69–74

    Article  Google Scholar 

  23. Riley BJ (2020) Electrochemical salt waste form development: a review of salt treatment and immobilization options. Ind Eng Chem Res 59(21):9760–9774

    Article  CAS  Google Scholar 

  24. Han W, Zhang YC, Liu RG, SunY LM (2021) Purification of spent electrolyte by sequential precipitation method and its on-line monitoring. Ionics 27:4829–4838

    Article  CAS  Google Scholar 

  25. Qu Y, Cheng M, Luo Y, Niu YS, Fu HY, Dou Q (2022) Removal of rare earth fission products from LiCl–KCl molten salt by sulfide precipitation. J Radioanal Nucl Chem 331(9):4011–4019

    Article  CAS  Google Scholar 

  26. Volkovich VA, Griffiths TR, Thied RC (2003) Treatment of molten salt wastes by phosphate precipitation: removal of fission product elements after pyrochemical reprocessing of spent nuclear fuels in chloride melts. J Nucl Mater 323(1):49–56

    Article  CAS  Google Scholar 

  27. Lee TK, Cho YZ, Eun HC, Son SM, Park HS, ParkGI HTS (2013) Study on the phosphate reaction characteristics of lanthanide chlorides in molten salt with operating conditions. J Nucl Sci Technol 50(7):742–750

    Article  CAS  Google Scholar 

  28. Luo Y, Geng J, Li WX, Fu HY, Dou Q, Li QN (2019) The evaporation behaviour of ThF4 mixed of FLiNaK melt during low-pressure distillation. J Nucl Mater 525:48–52

    Article  CAS  Google Scholar 

  29. Luo Y, Dai J, Dou Q, Fu HY, Li QN (2023) Recovery of FLiBe from ThF4–FLiBe salt using precipitation–distillation coupled method. RSC Adv 13(10):6637–6642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang ZH, Fu HY, Yang Y, Geng JX, Jia YP, Huang DD, Li WX, Gong Y, Dou Q, Li QN (2017) The evaporation behaviors of rare-earth-doped FLiNaK melts during low-pressure distillation. J Radioanal Nucl Chem 311:637–642

    Article  CAS  Google Scholar 

  31. Roine A (2006) HSC 6.0 Chemistry. Chemical reactions and Equilibrium software with extensive thermochemical database and Flowsheet simulation. Outokumpu Research Oy, Pori. ISBN 952-9507-12-7

  32. Cho YZ, Lee TK, Eun HC, Choi JH, Kim IT, Park GI (2013) Purification of used eutectic (LiCl–KCl) salt electrolyte from pyroprocessing. J Nucl Mater 437(1–3):47–54

    Article  CAS  Google Scholar 

  33. Robertson RC (1971) Conceptual Design Study of a Single-Fluid Molten Salt Breeder Reactor (ORNL-4541). Oak Ridge National Laboratory, Oak Ridge

  34. Eun HC, Cho YZ, Park HS, Lee TK, Kim IT, Park KI, Lee HS et al (2011) Study on a recovery of rare earth oxides from a LiCl–KCl–RECl3 system. J Nucl Mater 408(1):110–115

    Article  CAS  Google Scholar 

  35. Delpech S, Jaskierowicz S, Rodrigues D (2014) Electrochemistry of thorium fluoride in LiCl–KCl eutectic melts and methodology for speciation studies with fluorides ions. Electrochim Acta 144:383–390

    Article  CAS  Google Scholar 

  36. Eun HC, Yang HC, Lee HS, Kim IT (2009) Distillation and condensation of LiCl–KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process. J Nucl Mater 395(1–3):58–61

    Article  CAS  Google Scholar 

  37. Eun HC, Choi JH, Cho IH, Lee TK, Kim TJ, Shin JS, Park HS, Ahn DH (2016) Purification of LiCl–KCl eutectic waste salt containing rare earth chlorides delivered from the pyrochemical process of used nuclear fuel using a reactive distillation process. J Radioanal Nucl Chem 307:1419–1427

    Article  CAS  Google Scholar 

  38. Huang DD, Jia YP, Wang ZH, Geng JX, Yang Y, Dou Q, Li QN, Fu HY, Wang JH (2017) Separation of NdF3 using precipitation-distillation coupled method in FLiNaK molten salt. Nucl Tech 40(01):84–90 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (Nos. 12275349, 12175303)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiying Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Cheng, M., Luo, Y. et al. Removal of rare earth elements and thorium from LiCl–KCl molten salt by phosphate precipitation method. J Radioanal Nucl Chem 333, 2039–2050 (2024). https://doi.org/10.1007/s10967-024-09406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09406-9

Keywords

Navigation