Skip to main content
Log in

Heretophase Ceramics in the Hf–Si–Mo–B System Fabricated by the Combination of SHS and Hot Pressing Methods

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This work is devoted to the fabrication of heterophase powder and consolidated ceramics based on hafnium and molybdenum borides and silicides by combining self-propagating high-temperature synthesis (SHS) and hot pressing (HP). Composite ceramic HfB2–HfSi2–MoSi2 SHS powders are fabricated according to the magnesium-thermal reduction flowsheet from oxide raw materials, in which the combustion wave has temperatures of 1750–2119 K and rather high mss combustion rates of 8.4–9.3 g/s. The structure of synthesized SHS powders consists of relative coarse MoSi2 grains up to 10 μm in size, submicron elongated HfB2 grains mainly located inside the MoSi2 grains, and rounded Si precipitates. The composition with a lower boron concentration contains numerous polyhedral HfSi2 grains smaller than 10 μm in size. The resulting powders have an average particle size of ~6 μm with a maximal size up to 26 μm. The phase compositions of the ceramics consolidated by the HP method and synthesized SHS powders are identical. The microstructure of compact samples consists of faceted elongated HfB2 grains 0.5–10.0 μm in size, polyhedral HfSi2 and MoSi2 grains up to 8–10 μm in size, and silicon interlayers. The consolidated ceramics have a high structural and chemical homogeneity, low residual porosity of 1.1–1.7%, high hardness of 11.7–12.6 GPa, and thermal conductivity of 62–87 W/(m K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Wang, P., Li, H., Yuan, R., Wang, H., Zhang, Y., and Zhao, Z., The oxidation resistance of two-temperature synthetic HfB2–SiC coating for the SiC coated C/C composites, J. Alloys Compd., 2018, vol. 747, pp. 438–446.

    Article  Google Scholar 

  2. Nasseri, M., Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy, 2018, vol. 114, pp. 603–606.

    Article  Google Scholar 

  3. Pavese, M., Fino, P., Badini, C., Ortona, A., and Marino, G., HfB2/SiC as a protective coating for 2D Cf/SiC composites: Effect of high-temperature oxidation on mechanical properties, Surf. Coat. Technol., 2008, vol. 202, pp. 2059–2067.

    Article  Google Scholar 

  4. Mattia, D., Desmaison-Brut, M., Dimovski, S., Gogotsi, Y., and Desmaison, J., Oxidation behaviour of an aluminium nitride–hafnium diboride ceramic composite, J. Eur. Ceram. Soc., 2005, vol. 25, pp. 1789–1796.

    Article  Google Scholar 

  5. Zhang Wu-zhuang, Zeng Yi, Gbologah Lemuel, Xiong Xiang, and Huang Bai-yun, Preparation and oxidation property of ZrB2–MoSi2/SiC coating on carbon/carbon composites, Trans. Nonfer. Met. Soc. China, 2011. vol. 21, pp. 1538–1544.

    Article  Google Scholar 

  6. Poilov, V.Z. and Pryamilova, E.N., Oxidation thermodynamics of zirconium and hafnium borides, Zh. Neorg. Khim., 2016, vol. 61, no. 1, pp. 59–62.

    Google Scholar 

  7. Ren, J., Zhang, Y., Fu, Y., Zhang, P., Tian, S., and Zhang, L., Effects of the second phase on the microstructure and ablation resistance of HfC coating on C/C composites, Surf. Coat. Technol., 2018, vol. 344, pp. 250–258.

    Article  Google Scholar 

  8. Xiong, X., Wanga, Y., Li, G., Chen, Z., Sun, W., and Wang, Z., HfC/ZrC ablation protective coating for carbon/carbon composites, Corros. Sci., 2013, vol. 77, pp. 25–30.

    Article  Google Scholar 

  9. Zhuiykov, S., An investigation of conductivity, microstructure and stability of HfO2–ZrO2–Y2O3–Al2O3 electrolyte compositions for high-temperature oxygen measurement, J. Eur. Ceram. Soc., 2000, vol. 20, pp. 967–976.

    Article  Google Scholar 

  10. Guo, S., Liu, T., Ping, D., and Nishimura, T., Enhanced high-temperature strength of HfB2–SiC composite up to 1600°C, J. Eur. Ceram. Soc., 2018, vol. 38, pp. 1152–1157.

    Article  Google Scholar 

  11. Sciti, D., Balbo, A., and Bellosi, A., Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 1809–1815.

    Article  Google Scholar 

  12. Mashayekh, S. and Baharvandi, H.R., Effects of SiC or MoSi2 second phase on the oxide-based structure of HfB2-based ceramic composites, Ceram. Int., 2017, vol. 43, pp. 15053–15059.

    Article  Google Scholar 

  13. Wang, P., Li, H., Ren, X., Yuan, R., Hou, X., and Zhang, Y., HfB2–SiC–MoSi2 oxidation resistance coating fabricated through in-situ synthesis for SiC coated C/C composites, J. Alloys Compd., 2017, vol. 722, pp. 69–76.

    Article  Google Scholar 

  14. Wang, P., Li, H., Sun, J., Yuan, R., Zhang, L., Zhang, Y., and Li, T., The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating, Surf. Coat. Technol., 2018, vol. 339, pp. 12370–12380.

    Google Scholar 

  15. Wang, T. and Luo, R., Oxidation protection and mechanism of the HfB2–SiC–Si/SiC coatings modified by in-situ strengthening of SiC whiskers for C/C composites, Ceram. Int., vol. 44, pp. 12370–12380.

  16. Ren, X., Mo, H., Wang, W., Feng, P., Guo, L., and Li, Z., Ultrahigh temperature ceramic HfB2–SiC coating by liquid phase sintering method to protect carbon materials from oxidation, Mater. Chem. Phys., 2018, vol. 217, pp. 504–512.

    Article  Google Scholar 

  17. Sciti, D., Balbo, A., and Bellosi, A., Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 1809–1815.

    Article  Google Scholar 

  18. Cook, J., Khan, A., Lee, E., and Mahapatra, R., Oxidation of MoSi2-based composites, Mater. Sci. Eng. A, 1992, vol. 155, pp. 183–198.

    Article  Google Scholar 

  19. Enneti, R.K., Carney, C., Park, S., and Atre, S.V., Taguchi analysis on the effect of process parameters on densification during spark plasma sintering of HfB2–20SiC, Int. J. Refract. Met. Hard. Mater., 2012, vol. 31, pp. 293–296.

    Article  Google Scholar 

  20. Venugopal, S., Paul, A., Vaidhyanathan, B., Binner, J.G.P., Heaton, A., and Brownb, P.M., Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1471–1479.

    Article  Google Scholar 

  21. Licheri, R., Orrù, R., Musa, C., Mario Locci, A., and Cao, G., Consolidation via spark plasma sintering of HfB2/HfC/SiC composite powders obtained by self-propagating high-temperature synthesis, J. Alloys Compd., 2009, vol. 478, pp. 572–578.

    Article  Google Scholar 

  22. Wang, H., Lee, S., and Feng, L., HfB2–SiC composite prepared by reactive spark plasma sintering, Ceram. Int., vol. 40, pp. 11009–11013.

  23. Gürcan, K. and Ayas, E., In-situ synthesis and densification of HfB2 ceramics by the spark plasma sintering technique, Ceram. Int., 2017, vol. 43, p. 3547–3555.

    Article  Google Scholar 

  24. Monteverde, F., Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd., 2007, vol. 428, pp. 197–205.

    Article  Google Scholar 

  25. Mallik, M., Ray, K.K., and Mitra, R., Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 199–215.

    Article  Google Scholar 

  26. Concise Encyclopedia of Self-Propagating High-Temperature Synthesis. History, Theory, Technology, and Products, Borovinskaya, I.P., Gromov, A.A., Levashov, E.A., Maksimov, Y.M., Mukasyan, A.S., and Rogachev, A.S., Eds., Elsevier, 2017.

    Google Scholar 

  27. Orrù R. and Cao G.m Spark plasma sintering of SHS powders, in: Concise Encyclopedia of Self-Propagating High-Temperature Synthesis. History, Theory, Technology, and Products, Elsevier, 2017, pp. 349–351.

  28. Mishra, S.K., Das, S., and Pathak, L.C., Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis, Mater. Sci. Eng. A, 2004, vol. 364, pp. 249–255.

    Article  Google Scholar 

  29. Licheri, R., Orrù, R., Musa, C., Locci, A.M., and Cao, G., Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis, J. Mater. Sci., 2008, vol. 43, pp. 6406–6413.

    Article  Google Scholar 

  30. Mossino, P., Some aspects in self-propagating high-temperature synthesis, Ceram. Int., 2004, vol. 30, pp. 311–332.

    Article  Google Scholar 

  31. Levinskii, M.I., Mazanko, A.F., and Novikov, I.N., Khloristyi vodorod i solyanaya kislota (Hydrogen Chloride and Hydrochloric Acid), Moscow: Khimiya, 1985.

  32. Ripan, R. and Chetyanu, I., Neorganicheskaya khimiya. T. 1 i 2. Khimiya metallov (Inorganic Chemistry. Vols. 1, 2. Chemistry of Metals), Moscow: Mir, 1972.

  33. Gokhale, A.B. and Abbeschian, G.J., The Hf–Si (hafnium–silicon) system, Bull. Alloy Phase Diagr., 1989, vol. 10, no. 4, pp. 390–393.

    Article  Google Scholar 

  34. Vorotilo, S., Potanin, A.Yu., Pogozhev, Yu.S., Levashov, E.A., Kochetov, N.A., and Kovalev, D.Yu., Self-propagating high-temperature synthesis of advanced ceramics MoSi2–HfB2–MoB, Ceram. Int., 2019, vol. 45, pp. 96–107.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Scientific Foundation, project no. 19-19-00117.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. S. Pogozhev, M. V. Lemesheva, A. Yu. Potanin, S. I. Rupasov, V. I. Vershinnikov or E. A. Levashov.

Ethics declarations

The authors claim that they have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogozhev, Y.S., Lemesheva, M.V., Potanin, A.Y. et al. Heretophase Ceramics in the Hf–Si–Mo–B System Fabricated by the Combination of SHS and Hot Pressing Methods. Russ. J. Non-ferrous Metals 60, 380–389 (2019). https://doi.org/10.3103/S1067821219040102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821219040102

Keywords:

Navigation