Skip to main content
Log in

Investigation into the Structure and Oxidation Mechanism of FeAlCr/Al2O3 Detonation Spraying Coatings

  • NANOSTRUCTURED MATERIALS AND FUNCTIONAL COATINGS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The oxidation resistance of detonation spraying coatings of the FeAlCr/Al2O3 powder fabricated by mechanically assisted self-propagating high-temperature synthesis using aluminothermic reactions of oxide reduction is investigated. The powder has a sufficiently homogeneous composite structure consisting of chromium-alloyed ordered B2-FeAl and fine inclusions of α-Cr2O3 and α-Al2O3. The detonation coatings sprayed on stainless steel substrates have a typical layered structure without cracks and spalling. The coating thickness is 250–300 μm, and microhardness is in a range of 5.9–6.1 GPa. Coatings of the synthesized powder mainly inherit its structure and phase composition, although certain aluminum and chromium oxidation occurs when spraying. The features of the cyclic and isothermal oxidation of coatings in air in a temperature range of 900–1000°C are studied. It is established that the oxidation resistance of detonation coatings of the synthesized powder after oxidation in air for 48 h at 950°C is close that of coatings formed from the FeAl‒FexAly powder with an aluminum content of 45 wt %. At the same time, the linear thermal expansion coefficient (LTEC) of FeAlCr/Al2O3 coatings is closer to the LTEC of the base material, while their creep resistance is higher when compared the latter due to the presence of fine refractory oxide inclusions. It is assumed that α-Cr, Cr2O3, and numerous fine alumina inclusions present in the synthesized powder (and which form when spraying) accelerate the protective film, formation suppressing hematite nucleation and growth at early oxidation stages at temperatures up to 950°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Stoloff, N.S., Iron aluminides: present status and future, Mater. Sci. Eng. A, 1998, vol. 258, pp. 1–14.

    Article  Google Scholar 

  2. Kang, B.S.J. and Cisloiu, R., Evaluation of fracture behaviour of iron aluminides, Theor. Appl. Fract. Mech., 2006, vol. 45, pp. 25–40.

    Article  Google Scholar 

  3. Kuc, D., Niewielski, G., Jablonska, M., and Bednarczyk, I., Deformability and recrystallization of Fe–Al intermetallic phase—base alloy, JAMME, 2007, vol. 20, pp. 143–146.

    Google Scholar 

  4. Sikka, V.K., Welsch, G., and Desai, P.D., Oxidation and Corrosion of Intermetallic Alloys, West Lafayette, Indiana: Metal Information Analysis Centre, 1996.

    Google Scholar 

  5. Stott, F.H., Grabke, H.J., and Schutze, M., Oxidation-Sulphidation of Iron Aluminides. Oxidation of Intermetallics, Weinheim: Wiley, 1997.

    Google Scholar 

  6. Klower, J., Grabke, H.J., and Schutze, M., High Temperature Corrosion Behaviour of Iron Aluminides and Iron Aluminium–Chromium Alloys. Oxidation of Intermetallics, Weinheim: Wiley, 1997.

    Google Scholar 

  7. Morris, D.G., Muñoz-Morris, M.A., and Chao, J., Development of high strength, high ductility and high creep resistant iron aluminide, Intermetallics, 2004, vol. 12, pp. 821–826.

    Article  Google Scholar 

  8. Tortorelli, P.F., DeVan, J.H., Goodwin, G.M., and Howell, M., Elevated Temperature Coatings. Science and Technology, Warrendale, PA: TMS, 1995.

    Google Scholar 

  9. Pint, B.A., Tortorelli, P.F., and Wright, I.G., Oxidation of Intermetallics, New York: Wiley, 1996.

    Google Scholar 

  10. Subramanian, R., Iron-aluminide–Al2O3 composites by in situ displacement reactions: processing and mechanical properties, Mater. Sci. Eng. A, 1998, vol. 254, pp. 119–128.

    Article  Google Scholar 

  11. Grabke, H.J. and Schutze, M., Oxidation of Intermetallics, New York: Wiley, 2007.

    Google Scholar 

  12. Tortorelli, P.F. and DeVan, J.H., Compositional Influences of the High Temperature Corrosion Resistance of Iron Aluminides, in Processing, Properties, and Applications of Iron Aluminides, Warrendale, PA: The Minerals, Metals and Materials Society, 1994.

    Google Scholar 

  13. DeVan, J.H., Oxidation Behaviour of Fe 3 Al and Derived Aluminum Alloys. Oxidation of High Temperature Intermetallics, Warendale: TMS, 1989.

    Google Scholar 

  14. Halfa, H., Oxidation behavior of Fe 3 Al–5Cr–(0, 0.5, 1.5)Ti alloys at temperatures ranges from 800°C to 1200°C, JMMCE, 2010, vol. 9, pp. 775–786.

    Google Scholar 

  15. Doychak, J., Smialek, J.L., and Barrett, C.A., Oxidation of High Temperature Intermetallics, Warrendale, PA: The Minerals, Metals and Materials Society, 1989.

    Book  Google Scholar 

  16. Smialek, J.L., Doychak, J., and Gaydosh, D.J., Oxidation behavior of FeAl + Hf, Zr, B, Oxid. Met., 1990, vol. 34, pp. 259–270.

    Article  Google Scholar 

  17. Zhenyu Liu and Gao Wei, Effects of chromium on the oxidation performance of β-FeAlCr coatings, Oxid. Met., 2000, vol. 54, pp. 189–209.

    Article  Google Scholar 

  18. Gang, Ji, Elkedim, O., and Grosdidier, T., Deposition and corrosion resistance of HVOF sprayed nanocrystalline iron aluminide coatings, Surf. Coat. Technol., 2005, vol. 190, pp. 406–416.

    Article  Google Scholar 

  19. Guilemany, J.M., Lima, C.R.C., Cinca, N., and Miguel, J.R., Studies of Fe–40Al coatings obtained by high velocity oxy-fuel, Surf. Coat. Technol., 2006, vol. 201, pp. 2072–2079.

    Article  Google Scholar 

  20. Guilemany, J. and Cinca, N., High-temperature oxidation of Fe–40Al coatings obtained by HVOF thermal spray, Intermetallics, 2007, vol. 15, pp. 1384–1394.

    Article  Google Scholar 

  21. Guilemany, J.M., Cinca, N., Dosta, S., and Cano, I.G., FeAl and NbAl3 intermetallic–HVOF coatings: Structure and properties, J. Therm. Spray Technol., 2009, vol. 18, pp. 536–545.

    Article  Google Scholar 

  22. Senderowski, C. and Bojar, Z., Gas detonation spray forming of Fe–Al coatings in the presence of interlayer, Surf. Coat. Technol., 2008, vol. 202, pp. 3538–3548.

    Article  Google Scholar 

  23. Senderowski, C., Bojar, Z., Wolczynski, W., and Pawlowski, A., Microstructure characterization of D-gun sprayed Fe–Al intermetallic coatings. Intermetallics, 2010, vol. 18, pp. 1405–1409.

    Article  Google Scholar 

  24. Vityaz, P.A., Letsko, A.I., Talako, T.L., and Parnitsky, N.M., Chromium alloyed FeAl-based powder for oxidation resistant coatings, Euro PM2015 Proc., 2015, paper 3213202 (6 p).

  25. Vityaz, P.A., Letsko, A.I., Talako, T.L., and Parnitskii, N.M., Influence of the structural state of chromium on the oxidation resistance of the composite powder based on iron aluminide reinforced with Al2O3 inclusions, in Poroshkovaya metallurgiya: Respublikanskii mezhvedomstvennyi sbornik nauchnykh trudov (Powder Metallurgy: Collected Republican Interdepartmental Proc. of Scientific Works), Minsk: “Belaruskaya nauka”, 2014. no. 37, pp. 167–173.

  26. Talako, T.L., Belyaev, A.V., Il’yushchenko, A.F., and Letsko, A.I., RB Patent 6545, 2004.

  27. Letsko, A.I., Talako, T.L., Reutenok, Yu.A., and Parnitskii, N.M., RB Patent 19172, 2015.

  28. Grabke, H.G., Oxidation of NiAl and FeAl, Intermetallics, 1999, vol. 7, pp. 1153 –1158.

    Article  Google Scholar 

  29. Levashov, E.A., Fiziko-khimicheskie i tekhnologicheskie osnovy samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Physicochemical and Process Foundations of Self-Propagating High-Temperature Synthesis), Moscow: BINOM, 1999.

  30. Szczucka-Lasota, B., Formanek, B., Szymanski, K., Bierska, B., Oxidation of thermally sprayed coatings with FeAl intermetallic matrix, in: Proc. 12th Int. Sci. Conf. “Achievements in Materials and Manufacturing Engineering”, 2004, pp. 901–904.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. A. Vityaz, T. L. Talako, A. I. Letsko, N. M. Parnitsky or M. S. Yakovleva.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vityaz, P.A., Talako, T.L., Letsko, A.I. et al. Investigation into the Structure and Oxidation Mechanism of FeAlCr/Al2O3 Detonation Spraying Coatings. Russ. J. Non-ferrous Metals 60, 207–214 (2019). https://doi.org/10.3103/S1067821219020147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821219020147

Keywords:

Navigation