Skip to main content
Log in

Study of the Structural Evolution of a Two-Phase Titanium Alloy during Thermodeformation Treatment

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The behavior of the Ti–3.5Fe–4Cu–0.2B two-phase titanium alloy during thermal-deformation treatment under uniaxial compression is investigated. Boron is introduced to form a fine-grained structure in a cast state. Alloy samples 6 mm in diameter are formed by alloying pure components in a vacuum induction furnace and subsequent accelerated crystallization in a massive copper mold. The tests for uniaxial compression with true deformation of 0.9 are performed using a Gleeble 3800 physical simulation system of thermomechanical processes at 750, 800, and 900°C and strain rates of 0.1, 1, and 10 s–1. The alloy microstructure in the initial and deformed states is investigated using scanning electron microscopy. The tests result in a model of the dependence of the flow stress on temperature and strain rate. It is shown that the recrystallization of the initial cast structure containing solid solutions based on α-Ti, β-Ti, and titanium diboride colonies occurs during pressure treatment. The volume fraction of the solid solution grains based on α-titanium decreases during deformation with an increase in temperature, while the fraction of the β phase, on the contrary, increases. Herewith, the average grain size of solid solutions based on α-Ti and β-Ti varies insignificantly after deformation according to almost all studied modes. It is shown that the preferential mode of the pressure heat treatment for attaining the high complex of mechanical properties in the alloy under study is a temperature range of 750–800°C because the grain size of the α phase increases from 2.2 to 4.5 μm with an increase in temperature up to 900°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Here and below, wt %.

REFERENCES

  1. Il’in, A.A., Kolachev, B.A., and Pol’kin I.S., Titanovye splavy. Sostav, struktura, svoistva (Titanium Alloys. Composition, Structure, Properties), Moscow: VILS–MATI, 2009.

  2. Cui, C., Hu, B., Zhao, L., and Liu, S., Titanium alloy production technology, market prospects and industry development, Mater. Design., 2011, vol. 32, no. 3, pp. 1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011.

    Article  Google Scholar 

  3. Hayama, A.O.F., Lopes, J.F.S.C., da Silva, M.J.G., Abreu, H.F.G., and Caram, R., Crystallographic texture evolution in Ti–35Nb alloy deformed by cold rolling, Mater. Design., 2014, vol. 60, pp. 653–660. https://doi.org/10.1016/j.matdes.2014.04.024.

    Article  Google Scholar 

  4. Li, C., Chen, J. H., Wu, X., and Zwaag, S., A comparative study of the microstructure and mechanical properties of α + β titanium alloys, Met. Sci. Heat Treat., 2014, vol. 56, nos. 7–8, pp. 374–380. https://doi.org/10.1007/s11041-014-9765-2.

    Article  Google Scholar 

  5. Lu, J., Ge, P., Li, Q., Zhang, W., Huo, W., Hu, J., Zhang, Y., and Zhao, Y., Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy, J. Alloys Compd., 2017, vol. 727, pp. 1126–1135. https://doi.org/10.1016/j.jallcom.2017.08.239.

    Article  Google Scholar 

  6. Li, Y.-H., Chen, N., Cui, H.-T., and Wang, F., Fabrication and characterization of porous Ti–10Cu alloy for biomedical application, J. Alloys Compd., 2017, vol. 723, pp. 967–973. https://doi.org/10.1016/j.jallcom.2017.06.321.

    Article  Google Scholar 

  7. Shi, X., Zeng, W., Long, Y., and Zhu, Y., Microstructure evolution and mechanical properties of near-α Ti–8Al–1Mo–1V alloy at different solution temperatures and cooling, J. Alloys Compd., 2017, vol. 727, pp. 555–564. https://doi.org/10.1016/j.jallcom.2017.08.165.

    Article  Google Scholar 

  8. Chuvil’deev, V.N., Kopylov, V.I., Nokhrin, A.V., Tryaev, P.V., Kozlova, N.A., Tabachkova, N.Yu., Lopatin, Yu.G., Ershova, A.V., Mikhaylov, A.S., Gryaznov, M.Yu., and Chegurov, M.K., Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti–5Al–2V, J. Alloys Compd., 2017, vol. 723, pp. 354–367. https://doi.org/10.1016/j.jallcom.2017.06.220.

    Article  Google Scholar 

  9. Zhao, G.-H., Ketov, S.V., Jiang, J., Mao, H., Borgenstam, A., and Louzguine-Luzgin, D.V., New beta-type Ti–Fe–Sn–Nb alloys with superior mechanical strength, Mater. Sci. Eng. A, 2017, vol. 705, pp. 348–351. https://doi.org/10.1016/j.msea.2017.08.060.

    Article  Google Scholar 

  10. Nochovnaya, N.A., Khorev, A.I., and Yakovlev, A.L., Perspectives of alloying titanium alloys with rare earth elements, Met. Sci. Heat Treat., 2013, vol. 55, nos. 7–8, pp. 415–418. https://doi.org/10.1007/s11041-013-9646-0.

    Article  Google Scholar 

  11. Popov, A.A., Leder, M.O., Popova, M.A., Rossina, N.G., and Narygina, I.V., Effect of alloying on precipitation of intermetallic phases in heat-resistant titanium alloys, Phys. Met. Metallogr., 2015, vol. 116, no. 3, pp. 261–266. https://doi.org/10.1134/S0031918X15030102.

    Article  Google Scholar 

  12. Gaisin, R.A., Imayev, V.M., Imayev, R.M., and Gaisina, E.R., Microstructure and hot deformation behavior of two-phase boron-modified titanium alloy VT8, Phys. Met. Metallogr., 2013, vol. 114, no. 4, pp. 339–347. https://doi.org/10.1134/S0031918X13040042.

    Article  Google Scholar 

  13. Zadorozhnyy, V.Yu., Shchetinin, I.V., Zheleznyi, M.V., Chirikov, N.V., Wada, T., Kat, H., and Louzguine-Luzgin, D.V., Investigation of structure–mechanical properties relations of dual-axially forged Ti-based low-alloys, Mater. Sci. Eng. A, 2015, vol. 632, pp. 88–95. https://doi.org/10.1016/j.msea.2015.02.065.

    Article  Google Scholar 

  14. Zadorozhnyy, V.Yu., Inoue, A., and Louzguine-Luzgin, D.V., Investigation of the structure and mechanical properties of as-cast Ti–Cu-based alloys, Mater. Sci. Eng. A, 2013, vol. 573, pp. 175–182. https://doi.org/10.1016/j.msea.2013.02.031.

    Article  Google Scholar 

  15. Zadorozhnyy, V.Yu., Kozak, D.S., Shi, X., Wada, T., Louzguine-Luzgin, D.V., and Kato, H., Mechanical properties, electrochemical behavior and biocompatibility of the Ti-based low-alloys containing a minor fraction of noble metals, J. Alloys Compd., 2018, vol. 732, pp. 915–921. https://doi.org/10.1016/j.jallcom.2017.10.231.

    Article  Google Scholar 

  16. Zadorozhnyy, V.Yu., Shchetinin, I.V., Chirikov, N.V., and Louzguine-Luzgin, D.V., Tensile properties of a dual-axial forged Ti–Fe–Cu alloy containing boron, Mater. Sci. Eng. A, 2014, vol. 614, pp. 238–242. https://doi.org/10.1016/j.msea.2014.07.017.

    Article  Google Scholar 

  17. Zadorozhnyy, V.Yu., Inoue, A., and Louzguine-Luzgin, D.V., Ti-based nanostructured low-alloy with high strength and ductility, Mater. Sci. Eng. A, 2012, vol. 551, pp. 82–86. https://doi.org/10.1016/j.msea. 2012.04.097.

    Article  Google Scholar 

  18. Churyumov, A.Yu., Khomutov, M.G., Tsar’kov, A.A., Pozdnyakov, A.V., Solonin, A.N., Efimov, V.M., and Mukhanov, E.L., Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures, Phys. Met. Metallogr., 2014, vol. 115, pp. 809–813. https:// doi.org/10.1134/S0031918X14080031.

    Article  Google Scholar 

  19. Sellars, C.M. and McTegart, W.J., On the mechanism of hot deformation, Acta Metall., 1966, vol. 14, pp. 1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0.

    Article  Google Scholar 

  20. Gale, W.F. and Totemeier, T.C., Smithells Metals Reference Book, Oxford: Butterworth-Heinemann, 2004, 8th ed.

    Google Scholar 

  21. Perez, R.A., Nakajima, H., and Dyment, F., Diffusion in α-Ti and Zr, Mater. Trans., 2003, vol. 44, no. 1, pp. 2–13. https://doi.org/10.2320/matertrans.44.2.

  22. Neumann, G. and Tuijn, C., Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook, Amsterdam: Elsevier, 2009.

    Google Scholar 

  23. Titanovye splavy. Metallografiya titanovykh splavov (Titanium Alloys. Metallography of Titanium Alloys), Anoshkin, N.F., Ed., Moscow: Metallurgiya, 1980.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Ministry of Education and Science of the Russian Federation in the scope of state tasks to higher schools for 2017–2020, project no. 11.7172.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Churyumov, A. V. Mikhaylovskaya, A. N. Solonin or A. S. Prosviryakov.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churyumov, A.Y., Spasenko, V.V., Hazhina, D.M. et al. Study of the Structural Evolution of a Two-Phase Titanium Alloy during Thermodeformation Treatment. Russ. J. Non-ferrous Metals 59, 637–642 (2018). https://doi.org/10.3103/S1067821218060032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218060032

Keywords:

Navigation