Skip to main content
Log in

Features of plastic flow of powder Al-40Sn alloy during extrusion

  • Powder Materials and Coatings
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Features of compaction by means of the extrusion of powders of Al-40Sn alloy are investigated. Compaction is carried out in a temperature range of 25–230°C at a reduction coefficient of 4.5 (ɛ = 1.5). An investigation into the structure along the length of a sample, including the butt end, has shown that the main part of its change occurs at the steps of formation of a billet and upon the placement of the latter within an operating channel of a press mold for extrusion. Under pressure operation in this period of time, a new composite material is formed which consists of aluminum particles dispersed into an unbroken soft tin matrix. As such material is forced through the die, tin strata act as an interparticle lubricant, making the mutual displacement of aluminum particles, which do not deform much as a result, easier. As a consequence, oxide films on aluminum particles remain and prevent the establishment of strong interfaces. The extruded material contains cracks along interfaces and shows low plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lakhtin, Yu.M., Metallovedenie i termicheskaya obrabotka metallov (Physical Metallurgy and Heat Metal Treatment), Moscow: Metallurgiya, 1983.

    Google Scholar 

  2. Zozulya, V.D., Ekspluatatsionnye svoistva poroshkovykh podshipnikov (Operating Properties of Powder Bearings), Kiev: Naukova Dumka, 1989.

    Google Scholar 

  3. Enomoto, Y. and Yamamoto, T., Tribology Lett, 1998, vol. 5, p. 13.

    Article  CAS  Google Scholar 

  4. Kostornov, A.G. and Fushchich, O.I., Powder Metallurgy and Metal Ceramics, 2007, vol. 46, nos. 9–10, p. 503.

    Article  CAS  Google Scholar 

  5. Zou, Y., Xu, Z., Gao, Y., et al., Key Eng. Mater, 2007, vol. 353–358, p. 3063.

    Article  Google Scholar 

  6. Cruz, K.S., Meza, E.S., Fernandes, F.A.P., et al., Metal. Mater. Trans, 2010, vol. 41A, p. 972.

    Article  CAS  Google Scholar 

  7. Gel’man, A.S., Osnovy svarki davleniem (Foundations of Pressure Welding), Moscow: Mashinostroenie, 1970.

    Google Scholar 

  8. Arkulis, G.E., Sovmestnaya plasticheskaya deformatsiya raznykh metallov (Joint Plastic Deformation of Various Metals), Moscow: Metallurgiya, 1964.

    Google Scholar 

  9. Hussain, T., McCartney, D.G., Shipway, P.H., and Zhang, D., J. Thermal Spray Technol, 2009, vol. 18, no. 3, p. 364.

    Article  CAS  Google Scholar 

  10. Van Steenkiste, T. and Smith, J.R., J. High Resolut. Chrom., 2004, vol. 13, no. 2, p. 274.

    Google Scholar 

  11. Gilmore, D.L., Dykhuizen, R.C., Neiser, R.A., et al., J. High Resolut. Chrom., 1999, vol. 8, no. 4, p. 576.

    CAS  Google Scholar 

  12. Wang, J., Qu, X., Yin, H., et al., Front. Mater. Sci. China, 2008, vol. 2, no. 4, p. 392.

    Article  Google Scholar 

  13. Zlobin, S.B., Pai, V.V., Yakovlev, I.V., and Kuz’min, G.E., Combustion, Explosion, and Shock Waves, 2000, vol. 36, no. 2, p. 256.

    Article  Google Scholar 

  14. Marrocco, T., Driver, L.C., Harris, S.J., and McCartney, D.G., J. Thermal Spray Technol, 2006, vol. 15, no. 4, p. 634.

    Article  CAS  Google Scholar 

  15. Zahiri, S.H., Fraser, D., Gulizia, S., and Jahedi, M., J. High Resolut. Chrom., 2006, vol. 15, no. 3, p. 422.

    CAS  Google Scholar 

  16. Moss, M., Lapovok, R., and Bettles, C.J., JOM, 2007, Aug. p.54.

  17. Aref’ev, B.A., Kuleshov, V.V., and Panovko, V.M., Poroshk. Metall., 1990, no. 8, p. 15.

  18. Aref’ev, B.A., Kuleshov, V.V., and Panovko, V.M., Metalloved. Term. Obrab. Met., 1989, no. 6, p. 35.

  19. Bal’shin, M.Yu., Poroshk. Metall., 1973, no. 6, p. 37.

  20. Bal’shin, M.Yu., Poroshk. Metall., 1973, no. 10, p. 38.

  21. Il’in, L.N., Osnovy ucheniya o plasticheskoi deformatsii (Foundation of Plastic Deformation Study), Moscow: Mashinostroenie, 1980.

    Google Scholar 

  22. Manukyan, N.V., Agbalyan, S.G., Tumanyan, G.A., et al., Poroshk. Metall., 1991, no. 9(345), p. 23.

  23. Valiev, R.Z., Mater. Sci. Forum, 1997, vol. 243–245, p. 207.

    Article  Google Scholar 

  24. Langdon, T.G., Mater. Sci. Eng., 1994, vol. A174, p. 225.

    CAS  Google Scholar 

  25. Jain, M. and Christman, T., Acta Metal. Mater, 1994, vol. 42, no. 6, p. 1901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Rusin.

Additional information

Original Russian Text © N.M. Rusin, K.V. Ivanov, 2011, published in Izvestiya VUZ. Tsvetnaya Metallurgiya, 2011, No. 6, pp. 48–54.

About this article

Cite this article

Rusin, N.M., Ivanov, K.V. Features of plastic flow of powder Al-40Sn alloy during extrusion. Russ. J. Non-ferrous Metals 52, 504–510 (2011). https://doi.org/10.3103/S1067821211060137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821211060137

Keywords

Navigation