Skip to main content
Log in

Distributions Derived from the Continuous Iteration of the Hyperbolic Sine Function

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

Families of distributions built from the fractional or continuous iteration of exponential-type functions are characterized by a wide range of tail-heaviness. The present paper aims to define classes of distributions supported on the whole real line based on the continuous iteration of the hyperbolic sine function sinh. This function has already been commonly employed in univariate transformations such as the Johnson’s \(S_{U}\) and sinh–arcsinh transforms. The tail versatility generated by a transformation based on the continuous iteration of sinh is highlighted based on an initial logistic distribution. It leads to the Hyperbolic Tetration distribution. The Double Hyperbolic Tetration distribution, defined from two successive hyperbolic transformations, is also introduced. It is among the first class of distributions with potential distinct tetration indices at plus and minus infinity. The distributions are applied to multiple data sets in hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Y. Dijoux, ‘‘Construction of the tetration distribution based on the continuous iteration of the exponential-minus-one function,’’ Applied Stochastic Models in Business and Industry 36 (5), 891–916 (2020).

    Article  MathSciNet  Google Scholar 

  2. S. Kotz, T. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations (Birkhauser Publication, Boston, 2001).

    Book  MATH  Google Scholar 

  3. N. Balakrishnan and S. Kocherlakota, ‘‘On the double Weibull distribution: order statistics and estimation,’’ Sankhyā, The Indian Journal of Statistics, Series B (1960–2002) 47 (2), 161–178 (1985).

  4. A. Azzalini, ‘‘The skew-normal distribution and related multivariate families,’’ Scandinavian Journal of Statistics 32 (2), 159–188 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. T. A. S. Ferreira and M. F. J. Steel, ‘‘A constructive representation of univariate skewed distributions,’’ Journal of the American Statistical Association 101 (474), 823–829 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. S. Mudholkar and A. D. Hutson, ‘‘The epsilon-skew-normal distribution for analyzing near-normal data,’’ Journal of Statistical Planning and Inference 83 (2), 291–309 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Dijoux, ‘‘A new class of distributions on the whole real line based on the continuous iteration approach,’’ Communications in Statistics—Theory and Methods, pp. 1–26 (2021).

  8. C. Fernández and M. F. J. Steel, ‘‘On Bayesian modeling of fat tails and skewness,’’ Journal of the American Statistical Association 93 (441), 359–371 (1998).

    MathSciNet  MATH  Google Scholar 

  9. E. Jabotinsky, ‘‘Analytic iteration,’’ Transactions of the American Mathematical Society 108 (3), 457–477 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. E. Johnson, Johnson’s translation system, in multivariate statistical simulation, Ch. 5 (John Wiley and Sons, Ltd., 2013), pp. 63–105.

    Google Scholar 

  11. P. R. Tadikamalla and N. L. Johnson, ‘‘Systems of frequency curves generated by transformations of logistic variables,’’ Biometrika 69 (2), 461–465 (1982).

    Article  MathSciNet  Google Scholar 

  12. F. George and K. M. Ramachandran, ‘‘Estimation of parameters of Johnson’s system of distributions,’’ Journal of Modern Applied Statistical Methods 10 (2), 494–504 (2011).

    Article  Google Scholar 

  13. M. C. Jones and A. Pewsey, ‘‘sinh–arcsinh distributions,’’ Biometrika 96 (4), 761–780 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. F. Rosco, M. C. Jones, and A. Pewsey, ‘‘Skew t distributions via the sinh–arcsinh transformation,’’ Test 20 (3), 630–652 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Pewsey and T. Abe, ‘‘The sinh–arcsinhed logistic family of distributions: Properties and inference,’’ Annals of the Institute of Statistical Mathematics 67 (3), 573–594 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Jabotinsky, ‘‘Sur la représentation de la composition de fonctions par un produit de matrices. Application à l’itération de \(e^{z}\) et de \(e^{z}-1\),’’ C. R. Acad. Sci. Paris 224, 323–324 (1947).

    MathSciNet  MATH  Google Scholar 

  17. G. Szekeres, ‘‘Regular iteration of real and complex functions,’’ Acta Math. 100 (3–4), 203–258 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. L. Walker, ‘‘The exponential of iteration of exp(x)-1,’’ Proceedings of the American Mathematical Society 110 (3), 611–620 (1990).

    MathSciNet  MATH  Google Scholar 

  19. M. Aschenbrenner, ‘‘Logarithms of iteration matrices, and proof of a conjecture by Shadrin and Zvonkine,’’ Journal of Combinatorial Theory, Series A 119 (3), 627–654 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Zimering, ‘‘La fonction exponentielle d’ordre réel et son application pour la description du procédé de fluage,’’ Zeitschrift für angewandte Mathematik und Physik ZAMP 17 (3), 417–424 (1966).

  21. W. Siegfried and S. Zimering, ‘‘Research to determine the long-term mechanical properties of metals subjected to mechanical stress at elevated temperatures and neutron irradiation,’’ Tech. Rep., European Atomic Energy Community EUR3752e (1968).

  22. A. Ayebo and T. Kozubowski, ‘‘An asymmetric generalization of Gaussian and Laplace laws,’’ J. Probab. Stat. Sci. 1, 187–210 (2004).

    Google Scholar 

  23. V. Jurić, T. J. Kozubowski, and M. Perman, ‘‘An asymmetric multivariate Weibull distribution,’’ Communications in Statistics—Theory and Methods, pp. 1–19 (2019).

  24. S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions (Springer New York, 2013).

    Book  MATH  Google Scholar 

  25. Y. Qi, ‘‘On the tail index of a heavy tailed distribution,’’ Annals of the Institute of Statistical Mathematics 62 (2), 277–298 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. M. Cooke and D. Nieboer, ‘‘Heavy-tailed distributions: Data, diagnostics, and new developments,’’ SSRN Electronic Journal (2011).

    MATH  Google Scholar 

  27. L. Gardes, ‘‘A general estimator for the extreme value index: Applications to conditional and heteroscedastic extremes,’’ Extremes 18 (3), 479–510 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Gardes and S. Girard, ‘‘Estimating extreme quantiles of Weibull tail distributions,’’ Communications in Statistics—Theory and Methods 34 (5), 1065–1080 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. E. Brown, ‘‘Iteration of functions subordinate to schlicht functions,’’ Complex Variables, Theory, and Application: An International Journal 9 (2–3), 143–152 (1987).

    Google Scholar 

  30. P. Erdös and E. Jabotinsky, ‘‘On analytic iteration,’’ Journal d’Analyse Mathématique 8 (1), 361–376 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Comtet, Advanced Combinatorics (Dordrecht: Reidel, 1974).

    Book  MATH  Google Scholar 

  32. R. Ehrenborg, D. Hedmark, and C. Hettle, ‘‘A restricted growth word approach to partitions with odd/even size blocks,’’ Journal of Integer Sequences 20 (5) (2017).

  33. N. Sloane, ‘‘The On-line Encyclopedia of Integer Sequences, published electronically at https://oeis.org,’’ (2023).

  34. L. Carlitz, ‘‘Set partitions,’’ Fibonacci Quart. 4, 327–342 (1976).

    MathSciNet  MATH  Google Scholar 

  35. A. Eisinberg and G. Fedele, ‘‘On the inversion of the Vandermonde matrix,’’ Applied Mathematics and Computation 174 (2), 1384–1397 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Sándor and B. Crstici, Handbook of Number Theory II (Dordrecht: Kluwer Academic Publisher, 2004).

    Book  MATH  Google Scholar 

  37. J. Ecalle, Théorie des invariants holomorphes (PhD thesis, Publications Mathématiques d’Orsay, 1974).

  38. C. Lee, F. Famoye, and A. Y. Alzaatreh, ‘‘Methods for generating families of univariate continuous distributions in the recent decades,’’ Wiley Interdisciplinary Reviews: Computational Statistics 5 (3), 219–238 (2013).

    Article  Google Scholar 

  39. R. A. Rigby, M. D. Stasinopoulos, G. Z. Heller, and F. D. Bastiani, Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R (Chapman and Hall/CRC, The R Series, 2019).

  40. N. Balakrishnan, Handbook of Logistic Distribution, 2nd ed. (Statistics: A Series of Textbooks and Monographs) (CRC, 2010.)

  41. D. V. S. Sastry and D. Bhati, ‘‘A new skew logistic distribution: properties and applications,’’ Braz. J. Probab. Stat. 30 (2), 248–271 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

    Google Scholar 

  43. S. Yue and M. Hashino, ‘‘Probability distribution of annual, seasonal, and monthly precipitation in Japan,’’ Hydrological Sciences Journal 52 (5), 863–877 (2007).

    Article  Google Scholar 

  44. Sharma and Ojha, ‘‘Changes of annual precipitation and probability distributions for different climate types of the world,’’ Water 11 (10), 2092 (2019).

    Article  Google Scholar 

  45. M. Alam, K. Emura, C. Farnham, and J. Yuan, ‘‘Best-fit probability distributions and return periods for maximum monthly rainfall in Bangladesh,’’ Climate 6 (1), 9 (2018).

    Article  Google Scholar 

  46. D. Kothawale and M. Rajeevan, ‘‘Monthly, seasonal and annual rainfall time series for all India, homogeneous regions and meteorological subdivisions: 1871–2016,’’ Tech. Rep., Indian Institute of Tropical Meteorology, RR-138 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Dijoux.

Appendices

APPENDIX

A. PROOF OF PROPOSITION 1

The proof of Proposition 1 can be first illustrated by the retrieval of the coefficients of \(\widehat{Q_{1}}\). The first coefficients of the power of expansion for \(\{\psi^{[n]}\}_{1\leq n\leq 2}\) are presented in (28)

$$\psi^{[1]}(z)=\mathrm{sinh}(z)=z+\displaystyle\frac{z^{3}}{6}+\displaystyle\frac{z^{5}}{120}+O(z^{7}),$$
$$\psi^{[2]}(z)=\mathrm{sinh}(\mathrm{sinh}(z))=z+\displaystyle\frac{z^{3}}{3}+\displaystyle\frac{z^{5}}{10}+O(z^{7}).$$
(28)

The coefficients in \(z^{5}\) from (28) can be coincided with \(\delta\widehat{Q_{1}}\) from (5) for \(\delta\in\{1,2\}\). The corresponding linear system can be written as in (29)

$$\begin{bmatrix}1&1\\ 1&2\end{bmatrix}\begin{bmatrix}\mathcal{Y}_{1,0}\\ \mathcal{Y}_{1,1}\end{bmatrix}\begin{bmatrix}\displaystyle\frac{1}{1}\times\frac{1}{120}\\ \displaystyle\frac{1}{2}\times\frac{1}{10}\end{bmatrix}$$
(29)

The solution of this system is \(\begin{bmatrix}\frac{-1}{30},\frac{1}{24}\end{bmatrix}\) and corresponds to the second row of \(\mathcal{Y}\). This method can be generalized by noticing that the matrix in (29) can be extended to a Vandermonde matrix while the constant terms in (29) can be obtained from the powers of the iteration matrix \(M[\psi]\). Let \(V(n)\) denote a Vandermonde matrix of order \(n+1\) with entries \(\{(i+1)^{j}\}_{\begin{subarray}{c}0\leq i\leq n\\ 0\leq j\leq n\end{subarray}}\). The coefficients in ascending order of \(\widehat{Q_{n}}\) can be obtained by solving the matrix equation (30). \(V(n)\) is invertible, which leads to Eq. (11)

$$V(n)\times\begin{bmatrix}\mathcal{Y}_{n,0}\\ \vdots\\ \mathcal{Y}_{n,p}\\ \vdots\\ \mathcal{Y}_{n,n}\end{bmatrix}\begin{bmatrix}\displaystyle\frac{\mathcal{M}[\psi]_{2n+3,1}}{1}\\ \vdots\\ \displaystyle\frac{\mathcal{M}^{p}[\psi]_{2n+3,1}}{p}\\ \vdots\\ \displaystyle\frac{\mathcal{M}^{n+1}[\psi]_{2n+3,1}}{n+1}\end{bmatrix}$$
(30)

The computation of the inverse of \(V\) is not easily tractable. Therefore, as in Dijoux [1] for the continuous iteration of the exponential-minus-one function, the Vandermonde matrix is augmented. Let \(\tilde{V}(n)\) denote a Vandermonde matrix of order \(n+2\) with entries \(\left\{\tilde{V}(n)_{ij}=i^{j}\right\}_{\begin{subarray}{c}0\leq i\leq n+1\\ 0\leq j\leq n+1\end{subarray}}\). First, Eq. (30) can be rewritten as in (31)

$$\tilde{V}(n)\times\begin{bmatrix}\mathcal{Y}_{n,0}\\ \vdots\\ \mathcal{Y}_{n,p}\\ \vdots\\ \mathcal{Y}_{n,n}\\ 0\end{bmatrix}\begin{bmatrix}\mathfrak{y}_{n}\\ \displaystyle\frac{\mathcal{M}[\psi]_{2n+3,1}}{1}\\ \vdots\\ \displaystyle\frac{\mathcal{M}^{p}[\psi]_{2n+3,1}}{p}\\ \vdots\\ \displaystyle\frac{\mathcal{M}^{n+1}[\psi]_{2n+3,1}}{n+1}\end{bmatrix}.$$
(31)

Second, the entries of the inverse of \(\tilde{V}(n)\) can be simply expressed as in (32) [1], where \(s(.,.)\) denotes the Stirling numbers of the first kind, see Comtet [31]. Equation (12) can be finally obtained by a matrix product from the inversion of (31), which ends the proof

$$\left(\tilde{V}(n)\right)^{-1}_{i,j}=\displaystyle\sum_{\textrm{max}(i,j)}^{n+1}\frac{(-1)^{j+k}}{k!}C_{k}^{j}s(k,i).$$
(32)

B. INFORMATION ON THE METEOROLOGICAL SUBDIVISIONS

The observations used in Section 7.1 consist of the annual precipitations in 30 Indian meteorological subdivisions from 1871 to 2016 [46]. The data compiled are either obtained either from a network of 306 rain gauge stations or from the India Meteorological Department. The name of each of the meteorological subdivision is provided in Table 5 along with the number of stations involved in the data compilation.

Table 5 Information on the subdivisions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dijoux, Y. Distributions Derived from the Continuous Iteration of the Hyperbolic Sine Function. Math. Meth. Stat. 32, 103–121 (2023). https://doi.org/10.3103/S1066530723020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530723020023

Keywords:

Navigation