Skip to main content
Log in

Minimum distance estimation in normed linear spaces with Donsker-classes

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We consider minimum distance estimators where the discrepancy function is defined in terms of a supremum-norm based on a Donsker-class of functions. If the parameter set is contained in a normed linear space we prove a Portmanteau-type theorem. Here, the limit in general is not a probability measure, but an outer measure given by the hitting family of the set of all minimizing points of a certain stochastic process. In case there is exactly one minimizer one obtains traditional weak convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Billingsley, Convergence of ProbabilityMeasures (Wiley, New York, 1968).

    Google Scholar 

  2. J. Blackman, “On the Approximation of a Distribution Function by an Empirical Distribution”, Ann. Math. Statist. 26, 256–267 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bolthausen, “Convergence in Distribution of Minimum-Distance Estimators”, Metrika 24, 215–227 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Donsker, “Justification and Extension of Doob’s Heuristic Approach to the Kolmogorov-Smirnov Theorems”, Ann. Math. Statist. 23, 277–281 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. L. Donoho and R. C. Liu, “The ‘Automatic’ Robustness of Minimum Distance Functionals”, Ann. Statist. 16, 552–586 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  6. D. L. Donoho and R. C. Liu, “Pathologies of Some Minimum Distance Estimators”, Ann. Statist. 16, 587–608 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  7. R.M. Dudley, Uniform Central Limit Theorems (Cambridge Univ. Press, Cambridge, 1999).

    Book  MATH  Google Scholar 

  8. L. Dümbgen, “The Asymptotic Behavior of Some Nonparametric Change-Point Estimators”, Ann. Statist. 19, 1471–1495 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  9. T. P. Hettmansperger, I. Hueter, and J. Hüsler, “Minimum Distance Estimators”, J. Statist. Plann. Inference 41, 291–302 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Huber, Robust Statistics (Wiley, New York, 1981).

    Book  MATH  Google Scholar 

  11. M. Kac, J. Kiefer, and J. Wolfowitz, “On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods”, Ann. Math. Statist. 26, 189–211 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  12. H. L. Koul, Weighted Empirical Processes in Dynamic Nonlinear Models, in Lecture Notes in Statistics, 2nd ed. (Springer, New York, 2002), Vol. 166.

    MATH  Google Scholar 

  13. A. S. Kozek, “On Minimum Distance Estimation Using Kologorov-Lévy Type Metrics”, Austral. & New Zealand J. Statist. 40, 317–333 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Liese and K.-J. Miescke, Statistical Decision Theory (Springer, New York, 2008).

    MATH  Google Scholar 

  15. F. Liese and I. Vajda, “A General Asymptotic Theory of M-Estimators. I”, Math. Methods. Statist.. 12, 454–477 (2003).

    MathSciNet  Google Scholar 

  16. R. C. Littel and P. V. Rao, “On Minimum Distance Estimation Based on the Kolmogorov-Statistic”, Commun. Statist. A-Theory Methods 11, 1793–1807 (1982).

    Article  Google Scholar 

  17. P. W. Millar, “Robust estimation via minimum distance methods”, Z. Wahrsch. verw. Gebiete 55, 72–89 (1981).

    Article  MathSciNet  Google Scholar 

  18. W. C. Parr, “Minimum Distance Estimation: a Bibliography”, Commun. Statist. A-Theory Methods 10, 1205–1224 (1981).

    Article  MathSciNet  Google Scholar 

  19. W. C. Parr and W. R. Schucany, “Minimum Distance and Robust Estimation”, J. Amer. Statist. Assoc. 75, 615–624 (1980).

    Article  MathSciNet  Google Scholar 

  20. J. Pfanzagl, “Consistent Estimation in the Presence of Incidental Parameters”, Metrika 15, 141–148 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Pollard, “The Minimum Distance Method of Testing”, Metrika 27, 43–70 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  22. W. Sahler, “Estimation by Minimum Discrepancy Methods”, Metrika 16, 85–106 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Salinetti and R. J.-R. Wets, “On the Convergence in Distribution of Measurable Multifunctions (Random Sets), Normal Integrands, Stochastic Processes and Stochastic Infima”, Math. Oper. Res. 11, 385–419 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  24. G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics (Wiley, New York, 1986).

    MATH  Google Scholar 

  25. W. Stute, “Parameter Estimation in Smooth Empirical Processes”, Stochastic Process. Appl. 22, 223–244 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  26. A.W. van der Vaart, Asymptotic Statistics (Cambridge Univ. Press, Cambridge, 1998).

    MATH  Google Scholar 

  27. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes (Springer, New York, 1986).

    Google Scholar 

  28. A. Wald, “Note on the Consistency of the Maximum Likelihood Estimate”, Ann. Math. Statist. 20, 595–601 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  29. H. Witting and U. Müller-Funk, Mathematische Statistik II (Teubner, Stuttgart, 1995).

    MATH  Google Scholar 

  30. J. Wolfowitz, “Estimation by the Minimum Distance Method”, Ann. Inst. Statist. Math. 5, 9–23 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Wolfowitz, “The Minimum Distance Method”, Ann. Math. Statist. 28, 75–88 (1957).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ferger.

About this article

Cite this article

Ferger, D. Minimum distance estimation in normed linear spaces with Donsker-classes. Math. Meth. Stat. 19, 246–266 (2010). https://doi.org/10.3103/S1066530710030038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530710030038

Key words

2000 Mathematics Subject Classification

Navigation