Skip to main content
Log in

Convergence of Traub's Iteration under \(\omega\) Continuity Condition in Banach Spaces

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We provide the local and semi-local convergence analysis of the most celebrated cubically convergent Traub's iterative method (TM) for obtaining solutions of Banach space valued nonlinear operator equations. The significance of our work is that the convergence study only needs the \(\omega\) continuity condition on the first-order Fréchet derivative and avoids the use of higher order derivatives, which do not occur in this scheme. Also, the proposed local analysis extends the domain of convergence and applicability of this scheme. Using basins of attraction technique the complex dynamics of the scheme are also explored when it is applied on various complex polynomials. Finally, convergence radii for benchmark numerical problems are computed applying our analytical results. From these numerical tests, it is confirmed that the proposed analysis provides a larger convergence domain in comparison with the earlier work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. Argyros I.K. Convergence and Application of Newton-type Iterations (Springer, Berlin, 2008).

    MATH  Google Scholar 

  2. Argyros I.K., Cho Y.J., Hilout S. Numerical Methods for Equations and its Applications (Taylor & Francis, CRC Press, New York, 2012).

    Book  Google Scholar 

  3. Argyros I.K., Hilout S. Computational methods in nonlinear Analysis (World Scientific Publ. House, New Jersey, 2013).

    Book  Google Scholar 

  4. Behl R., Cordero A., Motsa S.S., Torregrosa J.R. "Construction of fourth-order optimal families of iterative methods and their dynamics", Appl. Math. Comput. 271, 89-101 (2015).

    MathSciNet  MATH  Google Scholar 

  5. Chun C., Lee M.Y., Neta B., Džunić J. "On optimal fourth-order iterative methods free from second derivative and their dynamics", Appl. Math. Comput. 218 (11), 6427-6438 (2012).

    MathSciNet  MATH  Google Scholar 

  6. Cordero A., Torregrosa J.R. "Variants of Newton's method for functions of several variables", Appl. Math. Comput. 183, 199-208 (2006).

    MathSciNet  MATH  Google Scholar 

  7. Darvishi M.T., Barati A. "A fourth-order method from quadrature formulae to solve systems of nonlinear equations", Appl. Math. Comput. 188, 257-261 (2007).

    MathSciNet  MATH  Google Scholar 

  8. Frontini M., Sormani E. "Some variant of Newton's method with third order convergence", Appl. Math. Comput. 140, 419-426 (2003).

    MathSciNet  MATH  Google Scholar 

  9. Homeier H.H.H. "A modified Newton method with cubic convergence: the multivariable case", J. Comput. Appl. Math. 169, 161-169 (2004).

    Article  MathSciNet  Google Scholar 

  10. Kou J., Li Y., Wang X. "A composite fourth-order iterative method for solving non-linear equations", Appl. Math. Comput. 184, 471-475 (2007).

    MathSciNet  MATH  Google Scholar 

  11. Özban A.Y. "Some new variants of Newton's method", Appl. Math. Lett. 17, 677-682 (2004).

    Article  MathSciNet  Google Scholar 

  12. Ortega J.M., Rheinboldt W.C. Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    MATH  Google Scholar 

  13. Potra F.A., Ptak V. Nondiscrete induction and iterative processes, Research Notes in Mathematics (Pitman Publ., Boston, MA, 1984).

    MATH  Google Scholar 

  14. Petković M.S., Neta B., Petković L., Džunić D. Multipoint methods for solving nonlinear equations (Elsevier, Amsterdam, 2013).

    MATH  Google Scholar 

  15. Rall L.B. Computational solution of nonlinear operator equations (Robert E. Krieger, New York, 1979).

    MATH  Google Scholar 

  16. Traub J.F. Iterative Methods for Solution of Equations (Prentice-Hal, Englewood Cliffs, 1964).

    MATH  Google Scholar 

  17. Weerakoon S., Fernando T.G.I. "A variant of Newton's method with accelerated third-order convergence", Appl. Math. Lett. 13, 87-93 (2000).

    Article  MathSciNet  Google Scholar 

  18. Amat S., Argyros I.K., Busquier S., Hernández-Verón M.A., Martínez E. "On the local convergence study for an efficient k-step iterative method", J. Comput. Appl. Math. 343, 753-761 (2018).

    Article  MathSciNet  Google Scholar 

  19. Argyros I.K. "On the semilocal convergence of a fast two-step Newton method", Revista Colombiana de Matemáticas 42 (1), 15-24 (2008).

    MathSciNet  MATH  Google Scholar 

  20. Argyros I.K., Hilout S. "On the local convergence of fast two-step Newton-like methods for solving nonlinear equations", J. Comput. Appl. Math. 245, 1-9 (2013).

    Article  MathSciNet  Google Scholar 

  21. Argyros I.K., Magreñán Á.A. "A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative", Numer. Algor. 71 (1), 1-23 (2015).

    Article  MathSciNet  Google Scholar 

  22. Argyros I.K., George S., Magreñán Á.A. "Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order", J. Comput. Appl. Math. 282, 215-224 (2015).

    Article  MathSciNet  Google Scholar 

  23. Argyros I.K., Cho Y.J., George S. "Local convergence for some third order iterative methods under weak conditions", J. Korean Math. Soc. 53 (4), 781-793 (2016).

    Article  MathSciNet  Google Scholar 

  24. Argyros I.K., George S. "Local convergence of a fifth convergence order method in Banach space", Arab J. Math. Sci. 23, 205-214 (2017).

    MathSciNet  MATH  Google Scholar 

  25. Argyros I.K., George S. "On the complexity of extending the convergence region for Traub's method", J. Complexity 56, 101423 (2020), DOI: https://doi.org/10.1016/j.jco.2019.101423.

    Article  MathSciNet  MATH  Google Scholar 

  26. Argyros I.K., Sharma D., Parhi S.K. "On the local convergence of Weerakoon–Fernando method with \(\omega\) continuity condition in Banach spaces", SeMA J. (2020), DOI: https://doi.org/10.1007/s40324-020-00217-y.

    Article  MathSciNet  MATH  Google Scholar 

  27. Arutyunov A., Zhukovskiy E., Zhukovskiy S. "The Kantorovich theorem on fixed points in metric spaces and coincident points", Proc. Steklov Inst. Math. 304, 60-73 (2019).

    Article  MathSciNet  Google Scholar 

  28. Arutyunov A., Zhukovskiy E., Zhukovskiy S. "On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem", Topology and Its Applications 275, article 107030 (2020).

    Article  MathSciNet  Google Scholar 

  29. Cordero A., Ezquerro J.A., Hernandez-Veron M.A. "On the local convergence of a fifth-order iterative method in Banach spaces", Appl. Math. Comput. 251, 396-403 (2015).

    MathSciNet  MATH  Google Scholar 

  30. Ezquerro J.A., González D., Hernández M.A. "On the local convergence of Newton's method under generalized conditions of Kantorovich", Appl. Math. Lett. 26 (5), 566-570 (2013).

    Article  MathSciNet  Google Scholar 

  31. Hernández M.A., Rubio M.J. "On the local convergence of a Newton–Kurchatov-type method for non-differentiable operators", Appl. Math. Comput. 304, 1-9 (2017).

    MathSciNet  MATH  Google Scholar 

  32. Kantorovich L., Akilov G. Functional Analysis (Pergamon Press, Oxford, 1982).

    MATH  Google Scholar 

  33. Maroju P., Magreñán Á.A., Sarríнa Í, Kumar A. "Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces", J. Math. Chem. 58, 686-705 (2020).

    Article  MathSciNet  Google Scholar 

  34. Martínez E., Singh S., Hueso J.L., Gupta D.K. "Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces", Appl. Math. Comput. 281, 252-265 (2016).

    MathSciNet  MATH  Google Scholar 

  35. Sharma D., Parhi S.K. "On the local convergence of a third-order iterative scheme in Banach spaces", Rend. Circ. Mat. Palermo, II. Ser (2020), DOI: https://doi.org/10.1007/s12215-020-00500-x.

    Article  MATH  Google Scholar 

  36. Sharma J.R., Argyros I.K. "Local convergence of a Newton–Traub composition in Banach spaces", SeMA J. 75 (1), 57-68 (2017).

    Article  MathSciNet  Google Scholar 

  37. Singh S., Gupta D.K., Badoni R.P., Martínez E., Hueso J.L. "Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces", Calcolo 54 (2), 527-539 (2017).

    Article  MathSciNet  Google Scholar 

  38. Parhi S.K., Gupta D.K. "Convergence of a third order method for fixed points in Banach spaces", Numer. Algor. 60, 419-434 (2012).

    Article  MathSciNet  Google Scholar 

  39. Zubelevich O. "Coincidence points of mapping in Banach spaces", Fixed Point Theory 21 (1), 389-394 (2020).

    Article  MathSciNet  Google Scholar 

  40. Scott M., Neta B., Chun C. "Basin attractors for various methods", Appl. Math. Comput. 218, 2584-2599 (2011).

    MathSciNet  MATH  Google Scholar 

  41. Neta B., Chun C., Scott M. "Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations", Appl. Math. Comput. 227, 567-592 (2014).

    MathSciNet  MATH  Google Scholar 

  42. Noor M.A., Wassem M. "Some iterative methods for solving a system of nonlinear equations", Appl. Math. Comput. 57, 101-106 (2009).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The first author is financially supported by University Grants Commission of India (ID: NOV2017-402662).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Sharma, S. K. Parhi or S. K. Sunanda.

Additional information

Russian Text © The Author(s), 2021, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, No. 9, pp. 61–79.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Parhi, S.K. & Sunanda, S.K. Convergence of Traub's Iteration under \(\omega\) Continuity Condition in Banach Spaces. Russ Math. 65, 52–68 (2021). https://doi.org/10.3103/S1066369X21090073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X21090073

Keywords

Navigation