Skip to main content
Log in

Solvability of an autonomous differential equation with aftereffect on the negative semi-axis

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We consider a linear autonomous homogeneous functional differential equation on the real negative semi-axis. We prove that if solutions belong to the special space of functions with integral limitations, then the space of solutions is finite-dimensional and its basis is formed by the solutions of the form (t m exp(pt)) generated by the roots of the characteristic equation. In contrast to the spaces used earlier, the pointwise estimation of solutions is replaced with the integral one. We adduce examples of differential equations with aftereffect and give the effective description of the space of solutions for these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hale, J. Theory of Functional Differential Equations (Springer, New York, 1977; Mir,Moscow, 1984).

    MATH  Google Scholar 

  2. Hastings, S. P. “Backward Existence and Uniqueness for Retarded Functional Differential Equations”, J. Diff. Equat. 5, 441–451 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  3. Lillo, J. C. “Backward Continuation of Retarded Functional Differential Equations”, J.Diff. Equat. 17, 349–360 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  4. Myshkis, A. D. Linear Differential Equations with Retarded Argument (Nauka, Moscow, 1972) [in Russian].

    MATH  Google Scholar 

  5. Bellman, R., Cooke, K. L. Differential-Difference Equations (Academic Press, New York, 1963; Mir, Moscow, 1967).

    MATH  Google Scholar 

  6. Plaksina, V. P., Plaksina, I. M., Plekhova, E. V. “On Solvability of the Cauchy Problem for One Quasilinear Singular Functional-Differential Equation”, RussianMathematics 60, No. 2, 54–61 (2016).

    MATH  Google Scholar 

  7. El’sgol’ts, L. E., Norkin, S. B. Introduction to the Theory of Differential Equations with Deviating Argument (Nauka, Moscow, 1971; Academic Press, New York–London, 1973).

    MATH  Google Scholar 

  8. Schmidt, E. “Über eine Klasse linearer funktionalen Differentialgleichungen”, Math. Ann., No. 70, 499–521 (1911).

    Article  MathSciNet  MATH  Google Scholar 

  9. Titchmarsh, E.C. Introduction to Theory of Fourier Integrals (Clarendon Press, Oxford, 1937; Gostekhizdat, Moscow–Leningrad, 1948).

    MATH  Google Scholar 

  10. Green, J. W. “A Note on the Solutions of the Equation f′(x) = f(x + a)”, Math. Mag. 26, No. 3, 117–120 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  11. A.M. Zverkin, “Über den Zusammenhang zwischen der Beschränktheit und der StabilitДt der Lösungen von linearen Systemenmit einer unendlichen Zahl von Freiheitsgraden”, Differ.Uravn. 4, No. 3, 366–367 (1968) [in Russian].

    MathSciNet  MATH  Google Scholar 

  12. Pitt, H. R. “On a Class of Integro-Differential Equations”, Proc. Cambridge Phil. Soc. 40, No. 3, 199–211 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  13. Balandin, A. S. “On Resolvability on Axis of Some Classes of Differential-Difference Equations”, Vestnik Tambovskogo Univ., Ser. Estestvennye i Tekhnicheskie Nauki 18, No. 5, 2449–2451 (2013).

    Google Scholar 

  14. Balandin, A. S. “On Resolvability on Axis of Autonomous Differential Equations with Bounded Retardation,” Vestnik Tambovskogo Univ., Ser. Estestvennye i Tekhnicheskie Nauki 20, No. 5, 1044–1050 (2015).

    Google Scholar 

  15. Kolmogorov, A. N., Fomin, S.V. Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  16. N.V. Azbelev and P.M. Simonov, Stability of Differential Equations with Aftereffects, Stability and control: theory, methods and appl. 20 (Taylor & Francis, London, 2003).

    MATH  Google Scholar 

  17. Gradshtein, I. S., Ryzhik, I. M. Talbes of Integrals, Sums, Series, and Products (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  18. Zubov, V. I. “Zur Theorie der linearen stationären Systeme mit retardiertem Argument”, Izv. Vyssh. Uchebn. Zaved.,Mat. 1958, No. 6, 86–95 (1958) [in Russian].

    MATH  Google Scholar 

  19. Vagina, M. Yu. “A Logistic Model with Delay Averaging”, Autom. Remote Control 64, No. 4, 666–671 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. Sabatulina, T. L., Malygina, V. V. “Several Stability Tests for Linear Autonomous Differential Equations with Distributed Delay”, RussianMathematics 51, No. 6, 52–60 (2007).

    MATH  Google Scholar 

  21. Mulyukov, M. V. “Asymptotic Stability of Two-Parameter Systems of Delay Differential Equations”, Russian Mathematics 58, No. 6, 44–50 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Balandin.

Additional information

Original Russian Text © A.S. Balandin, T.L. Sabatulina, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, No. 10, pp. 26–37.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandin, A.S., Sabatulina, T.L. Solvability of an autonomous differential equation with aftereffect on the negative semi-axis. Russ Math. 61, 21–31 (2017). https://doi.org/10.3103/S1066369X17100048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X17100048

Keywords

Navigation