Skip to main content
Log in

The method of integral transformations in inverse problems of anomalous diffusion

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).

    MATH  Google Scholar 

  2. Podlubny, I. Fractional Differential Equations (CA: Academic Press, San Diego, 1999).

    MATH  Google Scholar 

  3. Nigmatullin, R. R., “Fractional Integral and Its Physical Interpretation”, Theor.Math. Phys. 90, No. 3, 242–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Metzler, R. and Klafter, J. “The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach”, Phys. Rep. 339, No. 1, 1–77 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  5. Montroll, E.W. andWeiss, G. H. “RandomWalks on Lattices”. II, J. Math. Phys. 6, No. 2, 167–178 (1965).

    Article  Google Scholar 

  6. Barkai, E., Metzler, R., and Klafter, M. “From Continuous Time Random Walks to the Fractional Fokker–Plank Equation”, Phys. Rev. E 61, No. 1, 132–138 (2000).

    Article  MathSciNet  Google Scholar 

  7. Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., and Paradisi, P. “Discrete Random Walk Models for Space-Time Fractional Diffusion”, Chem. Phys. 284, No. 1, 521–541 (2002).

    Article  MATH  Google Scholar 

  8. Gorenflo, R., Vivoli, A., and Mainardi, F. “Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion”, Nonlinear Dynam. 38, Nos. 1–4, 101–116 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bondarenko, A. N., Ivaschenko, D. S. “Generalized Sommerfeld Problem for Time Fractional Diffusion Equation: Analytical and Numerical Approach”, J. Inv. Ill-PosedProblems 17, No. 4, 321–335 (2009).

    MathSciNet  MATH  Google Scholar 

  10. Bondarenko, A. N., Ivaschenko, D. S. “NumericalMethods for Solving Inverse Problems for Time Fractional Diffusion Equation with Variable Coefficient”, J. Inv. Ill-PosedProblems 17, No. 5, 419–440 (2009).

    MATH  Google Scholar 

  11. Cheng, J., Nakagawa, J., Yamamoto, M., and Yamazaki, T. “Uniqueness in an Inverse Problem for One-Dimensional Fractional Diffusion Equation”, InverseProblems 25, No. 11, 115002, 16 pp. (2009).

    MathSciNet  MATH  Google Scholar 

  12. Vladimirov, V. S. Equations of Mathematical Physics (Marcel Dekker, inc., New York, 1971).

    MATH  Google Scholar 

  13. Bragg, L. R., Dettman, J. W. “An Operator Calculus for Related Partial Differential Equations”, J. Math. Anal. Appl. 22, No. 1, 261–271 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  14. Bragg, L. R., Dettman, J. W. “A Class of Related Dirichlet and Initial Value Problems”, Proc. Amer. Math. Soc. 21, No. 1, 50–56 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  15. Bragg, L. R., Dettman, J. W. “Related Problems in Partial Differential Equations”, Bull. Amer. Math. Soc. 74, No. 2, 575–378 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  16. Lavrent’ev, M.M., Reznitskaya, K. G., Yakhno, V. G. One-Dimensional Inverse Problems of Mathematical Physics (AMS Translations, 1986, Series 2, 130).

    Book  MATH  Google Scholar 

  17. Wyss, M. M., Wyss, W. “Evolution, its Fractional Extension and Generalization”, http://arxiv.org/abs/math-ph/9912023.

  18. Gorenflo, R., Iskenderov, A., and Luchko, Y. “Mapping Between Solutions of Fractional Diffusion-Wave Equations”, http://public.beuth-hochschule.de/ luchko/papers/fcaa3.PDF.

  19. Romanov, V. G. Inverse Problems of Mathematical Physics (VNU Science Press, Utrecht, The Netherlands, 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bondarenko.

Additional information

Original Russian Text © A.N. Bondarenko, T.V. Bugueva, D.S. Ivashchenko, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, No. 3, pp. 3–14.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, A.N., Bugueva, T.V. & Ivashchenko, D.S. The method of integral transformations in inverse problems of anomalous diffusion. Russ Math. 61, 1–11 (2017). https://doi.org/10.3103/S1066369X1703001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X1703001X

Keywords

Navigation