Skip to main content
Log in

An Inverse Problem of Recovering the Variable Order of the Derivative in a Fractional Diffusion Equation

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider a fractional diffusion equation with variable space-dependent order of the derivative in a bounded multidimensional domain. The initial data are homogeneous and the right-hand side and its time derivative satisfy some monotonicity conditions. Addressing the inverse problem with final overdetermination, we establish the uniqueness of a solution as well as some necessary and sufficient solvability conditions in terms of a certain constructive operator \( A \). Moreover, we give a simple sufficient solvability condition for the inverse problem. The arguments rely on the Birkhoff–Tarski theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kian Y., Soccorsi E., and Yamamoto M., “On time-fractional diffusion equations with space-dependent variable order,” Ann. Henri Poincare, vol. 19, no. 12, 3855–3881 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  2. Van Bockstal K., “Existence of a unique weak solution to a non-autonomous time-fractional diffusion equation with space-dependent variable order,” Adv. Difference Equ. (2021) (Article 314, 43 pp.).

  3. Gripenberg G., Londen S.-O., and Staffans O., Volterra Integral and Functional Equations, Cambridge University, Cambridge (1990).

    Book  MATH  Google Scholar 

  4. Zacher R., “Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces,” Funkc. Ekv., vol. 52, no. 1, 1–18 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. Wittbold P., Wolejko P., and Zacher R., Bounded Weak Solutions of Time-Fractional Porous Medium Type and More General Nonlinear and Degenerate Evolutionary Integro-Differential Equations [Preprint] (2008) (arXiv: 2008.10919v1).

    MATH  Google Scholar 

  6. Artyushin A.N., “Fractional integral inequalities and their applications to degenerate differential equations with the Caputo fractional derivative,” Sib. Math. J., vol. 61, no. 2, 208–221 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  7. Orlovsky D.G., “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space,” J. Sib. Fed. Univ. Math. Phys., vol. 8, no. 1, 55–63 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. Sakamoto K. and Yamamoto M., “Inverse source problem with a final overdetermination for a fractional diffusion equation,” Math. Control Related Fields, vol. 1, no. 4, 509–518 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. Van Bockstal K., “Uniqueness for inverse source problems of determining a space dependent source in time-fractional equations with non-smooth solutions,” Fractal Fract., vol. 5, no. 4 (2021) (Article 169, 11 pp.).

  10. Kinash N. and Janno J., “Inverse problems for a generalized subdiffusion equation with final overdetermination,” Math. Model. Anal., vol. 24, no. 2, 236–262 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. Kinash N. and Janno J., “Inverse problem to identify a space-dependent diffusivity coefficient in a generalized subdiffusion equation from final data,” Proc. Est. Acad. Sci., vol. 71, no. 1, 3–15 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  12. Janno J. and Kinash N., “Reconstruction of an order of derivative and a source term in a fractional diffusion equation from final measurements,” Inverse Problems, vol. 34, no. 2 (2018) (Article 025007, 19 pp.).

  13. Alimov S. and Ashurov R., “Inverse problem of determining an order of the Riemann–Liouville time-fractional derivative,” Progr. Fract. Differ. Appl., vol. 8, no. 4, 467–474 (2022).

    Article  Google Scholar 

  14. Prilepko A.I. and Kostin A.B., “Inverse problems of the determination of the coefficient in parabolic equations. I,” Sib. Math. J., vol. 33, no. 3, 489–496 (1992).

    Article  MATH  Google Scholar 

  15. Prilepko A.I., Orlovsky D.G., and Vasin I.A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York (2000).

    MATH  Google Scholar 

  16. Lyusternik L.A. and Sobolev V.I., A Concise Course in Functional Analysis, Higher School Publishing House, Moscow (1982) [Russian].

    MATH  Google Scholar 

  17. Zacher R., “Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients,” J. Math. Anal. Appl., vol. 348, no. 1, 137–149 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakhushev A.M., Fractional Calculus and Its Applications, Fizmatgiz, Moscow (2003) [Russian].

    MATH  Google Scholar 

  19. Zacher R., “A weak Harnack inequality for fractional evolution equations with discontinuous coefficients,” Ann. Sc. Norm. Super. Pisa Cl. Sci., vol. 12, no. 5, 903–940 (2013).

    MathSciNet  MATH  Google Scholar 

  20. Meyer-Nieberg P., Banach Lattices, Springer, Berlin (1991).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Artyushin.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 4, pp. 675–686. https://doi.org/10.33048/smzh.2023.64.402

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyushin, A.N. An Inverse Problem of Recovering the Variable Order of the Derivative in a Fractional Diffusion Equation. Sib Math J 64, 796–806 (2023). https://doi.org/10.1134/S003744662304002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744662304002X

Keywords

UDC

Navigation