Skip to main content
Log in

The boundedness and the fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In the space L p (ℝn), 1 < p < ∞, we study a new wide class of integral operators with anisotropically homogeneous kernels. We obtain sufficient conditions for the boundedness of operators from this class. We consider the Banach algebra generated by operators with anisotropically homogeneous kernels of compact type and multiplicatively slowly oscillating coefficients. We establish a relationship between this algebra and multidimensional convolution operators, and construct a symbolic calculus for it. We also obtain necessary and sufficient conditions for the Fredholm property of operators from this algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. G. Mikhailov, “A New Class of Singular Integral Equations,” Math. Nachr. 76, 91–107 (1977).

    Article  MathSciNet  Google Scholar 

  2. N. K. Karapetyants, “Necessary Conditions for the Boundedness of an Operator with Nonnegative Quasihomogeneous Kernel,” Matem. Zametki 30(5), 787–794 (1981).

    MathSciNet  Google Scholar 

  3. G. H. Hardy, G. E. Littlewood, and G. Pólya, Inequalities (Cambridge University Press, Cambridge, 1934; GIIL, Moscow, 1948).

    Google Scholar 

  4. N. Karapetiants and S. Samko, Equations with Involutive Operators (Birkhäuser, Boston-Basel-Berlin, 2001).

    Book  MATH  Google Scholar 

  5. O. G. Avsyankin and N. K. Karapetyants, “Algebra of Multidimensional Integral Operators with Homogeneous Hernels with Varying coefficients,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 1, 3–10 (2001) [Russian Mathematics (Iz. VUZ) 45 (1), 1–8 (2001)].

  6. O. G. Avsyankin, “On the Algebra of Pair Integral Operators with Homogeneous Kernels,” Matem. Zametki 73(4), 483–493 (2003).

    MathSciNet  Google Scholar 

  7. O. G. Avsyankin and V.M. Deundyak, “On the Index of Multidimensional Integral Operators with Bihomogeneous Kernel and Variable Coefficients,” Izv. Vyssh. Uchebn. Zaved., Mat. No. 3, 3–12 (2005) [Russian Mathematics (Iz. VUZ) 49 (3), 1–10 (2005)].

  8. S. G. Samko, Hypersingular Integrals and Their Applications (Rostovsk. Gos. Univ., Rostov-on-Don, 1984) [in Russian].

    MATH  Google Scholar 

  9. V. M. Deundyak, “Multidimensional Integral Operators with Homogeneous Kernels of Compact Type and MultiplicativelyWeakly Oscillating Coefficients,” Matem. Zametki, 87(5), 713–729 (2010).

    MathSciNet  Google Scholar 

  10. B. A. Plamenevskii, Algebras of Pseudo-Differential Operators (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  11. V. Rabinovich, S. Roch, and B. Silbermann, Limit Operators and Their Applications in Operator Theory (Birkhäuser, Boston-Basel-Berlin, 2004).

    Book  MATH  Google Scholar 

  12. I. B. Simonenko, “Operators of Convolution Type in Cones,” Matem. Sborn. 74(2), 298–313 (1967).

    MathSciNet  Google Scholar 

  13. V. M. Deundyak and E. I. Miroshnikova, “Multidimensional Multiplicative Convolutions and Their Applications to the Theory of Operators with Homogeneous Kernels,” in Tr. Nauchn. Shkoly I. B. Simonenko (Rostov-on-Don, 2010), pp. 67–78.

  14. V. Rabinovich, B.-W. Schulze, and N. Tarkhanov, “C*-Algebras of Singular Integral Operators in Domains with Oscillating Conical Singularities,” Manuscripta math. 108(1), 69–90 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. I. Miroshnikova and V. M. Deundyak, “Multidimensional Integral Operators with Anisotropically Homogeneous Kernels of Compact Type,” in Proceedings of International Conference on Differential Equations and Dynamic Systems, Suzdal’, July 2–7, 2010(MIRAN, Moscow, 2010), pp. 135–136.

    Google Scholar 

  16. V. B. Korotkov, Integral Operators (Nauka, Novosibirsk, 1983) [in Russian].

    MATH  Google Scholar 

  17. L. V. Kantorovich and G. P. Akilov, Functional Analysis (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  18. B. Ya. Shteinberg, “Convolution Operators on Locally Compact Groups,” Funkts. Analiz i ego Prilozh. 15(3), 95–96 (1981).

    MathSciNet  Google Scholar 

  19. H. O. Cordess, “On Compactness of Commutators of Multiplications and Convolutions, and Boundedness of Pseudodifferential Operators,” J. Func. Anal. 18(2), 115–131 (1975).

    Article  Google Scholar 

  20. V. M. Deundyak and B. Ya. Shteinberg, “Index of Convolution Operators with Slowly Varying Coefficients on Abelian Groups,” Funkts. Analiz i ego Prilozh. 19(4), 84–85 (1985).

    MathSciNet  MATH  Google Scholar 

  21. K. Kuratowski, Topology (New York-London-Warszawa 1966; Nauka, Moscow, 1971), Vol. 1.

  22. I. B. Simonenko, The Local Method in the Theory of Shift-Invariant Operators and Their Envelopes (TsVVR, Rostov-on-Don, 2007) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Deundyak.

Additional information

Original Russian Text © V.M. Deundyak and E.I. Miroshnikova, 2012, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, No. 7, pp. 3–17.

About this article

Cite this article

Deundyak, V.M., Miroshnikova, E.I. The boundedness and the fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients. Russ Math. 56, 1–14 (2012). https://doi.org/10.3103/S1066369X12070018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X12070018

Keywords and phrases

Navigation