Skip to main content
Log in

Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the L2 Space on the Heisenberg Group

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the Heisenberg group ℍn with Korányi norm. In the space L2(ℍn), we introduce integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients. For the unital C*-algebra \(\mathfrak{W}\)(ℍn) generated by such operators, we construct a symbolic calculus and in terms of this calculus formulate necessary and sufficient conditions for an operator in \(\mathfrak{W}\)(ℍn) to be a Fredholm operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. G. Avsyankin, “On the C*-algebra generated by multidimensional integral operators with homogeneous kernels and multiplicative translations,” Dokl. Math. 77 (2), 298–299 (2008) [transl. from Dokl. Akad. Nauk 419 (6), 727-728 (2008)].

    Article  MathSciNet  Google Scholar 

  2. O. G. Avsyankin, “On multidimensional integral operators with homogeneous kernels perturbed by one-sided multiplicative shift operators,” Vladikavkaz. Mat. Zh. 15 (1), 5–13 (2013).

    MathSciNet  MATH  Google Scholar 

  3. L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An Introduction to the Heisenberg Group and the Sub- Riemannian Isoperimetric Problem (Birkhäuser, Basel, 2007), Prog. Math. 259.

    MATH  Google Scholar 

  4. G. S. Chirikjian and A. B. Kyatkin, Engineering Applications of Noncommutative Harmonic Analysis. With Emphasis on Rotation and Motion Groups (CRC Press, Boca Raton, FL, 2001).

    MATH  Google Scholar 

  5. V. V. Denisenko and V. M. Deundyak, “On the boundedness of integral operators with homogeneous kernels on the Heisenberg group with Kor´anyi norm,” Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, No. 3-1, 21–27 (2017).

    Google Scholar 

  6. V. V. Denisenko and V. M. Deundyak, “Invertibility of integral operators with homogeneous kernels of compact type on the Heisenberg group,” Mat. Fiz. Komp’yut. Model. 21 (3), 5–18 (2018).

    MathSciNet  Google Scholar 

  7. V. M. Deundyak, “Multidimensional integral operators with homogeneous kernels of compact type and multiplicatively weakly oscillating coefficients,” Math. Notes 87 (5), 672–686 (2010) [transl. from Mat. Zametki 87 (5), 704-720 (2010)].

    Article  MathSciNet  Google Scholar 

  8. V. M. Deundyak, “Convolution operators with weakly oscillating coefficients in Hilbert moduli on groups and applications,” J. Math. Sci. 208 (1), 100–108 (2015).

    Article  MathSciNet  Google Scholar 

  9. V. M. Deundyak and D. A. Leonov, “Fourier method for solving two-sided convolution equations on finite noncommutative groups,” Comput. Math. Math. Phys. 58 (10), 1562–1572 (2018) [transl. from Zh. Vychisl. Mat. Mat. Fiz. 58 (10), 1616-1626 (2018)].

    Article  MathSciNet  Google Scholar 

  10. V. M. Deundyak and E. I. Miroshnikova, “The boundedness and the Fredholm property of integral operators with anisotropically homogeneous kernels of compact type and variable coefficients,” Russ. Math. 56 (7), 1–14 (2012) [transl. from Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 3-17 (2012)].

    Article  MathSciNet  Google Scholar 

  11. V. M. Deundyak and B. Ya. Shteinberg, “Index of convolution operators with slowly varying coefficients on Abelian groups,” Funct. Anal. Appl. 19 (4), 321–323 (1985) [transl. from Funkts. Anal. Prilozh. 19 (4), 84-85 (1985)].

    Article  Google Scholar 

  12. A. N. Dranishnikov and S. Ferry, “On the Higson-Roe corona,” Russ. Math. Surv. 52 (5), 1017–1028 (1997) [transl. from Usp. Mat. Nauk 52 (5), 133-146 (1997)].

    Article  MathSciNet  Google Scholar 

  13. N. Karapetiants and S. Samko, Equations with Involutive Operators (Birkhäuser, Boston, 2001).

    Book  Google Scholar 

  14. V. V. Kisil, “Symmetry, geometry and quantization with hypercomplex numbers,” in Geometry, Integrability and Quantization: Proc. 18th Conf., Varna, 2016 (Avangard Prima, Sofia, 2017), pp. 11–76.

    Google Scholar 

  15. V. B. Korotkov, Integral Operators (Nauka, Novosibirsk, 1983) [in Russian].

    MATH  Google Scholar 

  16. S. G. Krantz, Explorations in Harmonic Analysis. With Applications to Complex Function Theory and the Heisenberg Group (Birkhäuser, Boston, 2009), Appl. Numer. Harmon. Anal.

    MATH  Google Scholar 

  17. G. J. Murphy, C*-Algebras and Operator Theory (Academic, Boston, 1990).

    MATH  Google Scholar 

  18. B. Ya. Shteinberg, “Convolution operators on locally compact groups,” Funct. Anal. Appl. 15 (3), 233–234 (1981) [transl. from Funkts. Anal. Prilozh. 15 (3), 95-96 (1981)].

    Article  MathSciNet  Google Scholar 

  19. I. B. Simonenko, “A new general method of investigating linear operator equations of the type of singular integral equations. II,” Izv. Akad. Nauk SSSR, Ser. Mat. 29 (4), 757–782 (1965).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Denisenko or V. M. Deundyak.

Additional information

Russian Text © The Author(s), 2020, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2020, Vol. 308, pp. 167–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, V.V., Deundyak, V.M. Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the L2 Space on the Heisenberg Group. Proc. Steklov Inst. Math. 308, 155–167 (2020). https://doi.org/10.1134/S0081543820010125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543820010125

Navigation