Skip to main content
Log in

Kinematics of finite elastoplastic deformations

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

In this paper we review various approaches to the decomposition of total strains into elastic and nonelastic (plastic) components in the multiplicative representation of the deformation gradient tensor. We briefly describe the kinematics of finite deformations and arbitrary plastic flows. We show that products of principal values of distortion tensors for elastic and plastic deformations define principal values of the distortion tensor for total deformations. We describe two groups of methods for decomposing deformations and their rates into elastic and nonelastic components. The methods of the first group additively decompose specially built tensors defined in a common basis (initial, current, or “intermediate”). The second group implies a certain relation connecting tensors that describe elastic and plastic deformations. We adduce an example of constructing constitutive relations for elastoplastic continuums at large deformations from thermodynamic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Eliseev, Mechanics of Elastic Bodies (SPbGPU, Saint-Petersburg, 1999).

    Google Scholar 

  2. S. N. Korobeinikov, Nonlinear Deformation of Solids (SO RAN, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  3. V. I. Levitas, Large Elastoplastic Deformations of Materials at High Pressure (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  4. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow,1980; North-Holland, Amsterdam, 1990).

    Google Scholar 

  5. A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastoplastic Deformations: Theory, Algorithms, and Applications, (Nauka, Moscow, 1986).

  6. D. D. Rabotyagov, Mechanics of Material under High Strains (Shtiintsa, Kishinev, 1975).

    Google Scholar 

  7. J. S. Simo, “A Framework for Finite Strain Elastoplasticity Based on Maximum Plastic Dissipation and the Multiplicative Decomposition: Part I. Continuum Formulation,” Comput. Meth. Appl. Mech. Eng. 66(2), 199–219 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Xiao, O. T. Bruhns, and A. Meyers, “Logarithmic Strain, Logarithmic Spin, and Logarithmic Rate,” Acta Mech. 124(1–4) 89–105 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Xiao, O. T. Bruhns, and A. Meyers, “A Consistent Finite Elastoplasticity Theory Combining Additive and Multiplicative Decomposition of the Stretching and Deformation Gradient,” Int. J. Plasticity 16(2), 143–177 (2000).

    Article  MATH  Google Scholar 

  10. H. Xiao and L.-S. Chen, “Hencky’s Logarithmic Strain and Dual Stress-Strain and Strain-Stress Relations in Isotropic Finite Hyperelasticity,” Int. J. Solids Struct. 40(6), 1455–1463 (2003).

    Article  MATH  Google Scholar 

  11. H. Xiao, O. T. Bruhns, and A. Meyers, “Thermodynamic Laws and Consistent Eulerian Formulation of Finite Elastoplasticity with Thermal Effects,” J.Mech. Phys. Solids 55(2), 338–365 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. A. Markin, D. V. Khristich and M. Yu. Sokolova, “Relations of the Nonlinear Thermoelastic Theory in Variational Form,” Trudy Vseross. Nauchn. Konf. “Matem. Modelirovanie i Kraevye Zadachi”, Part 1 (Samara, 2004), 139–142 (2004).

  13. A. A. Markin and M. Yu. Sokolova, “Constitutive Relations of Nonlinear Thermoelasticity of Anisotropic Bodies,” Zhurn. Prikl. Mekh. i Tekhn. Fiz. 44(1), 170–175 (2003).

    MATH  Google Scholar 

  14. C. Sansour, “On the Dual Variable of the Logarithmic Strain Tensor, the Dual Variable of the Cauchy Stress Tensor, and Related Issues,” Int. J. Solids Struct. 38, 9221–9232 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  15. Yu. I. Kadashevich and S. P. Pomytkin, “The Role of Deformation Measure in Constructing Endochronic Variants of the Plastic Theory which Takes into Account Finite Deformations,” Vestn. Samarsk. Gos. Tekhn. Univ., Ser. Fiz.-Matem. Nauk 12, 91–93 (2001).

    Google Scholar 

  16. Yu. I. Kadashevich and S. P. Pomytkin, “Description of Second-Order Effects in the Studies of Finite Deformations,” Vestn. Samarsk. Gos. Tekhn. Univ., Ser. Fiz.-Matem. Nauk 19, 91–93 (2003).

    Google Scholar 

  17. F. Auricchio and R. L. Taylor, “A Return-Map Algorithm for General Associative Isotropic Elasto-Plastic Materials in Large Deformation Regimes,” Int. J. Plasticity 15(12), 1359–1378 (1999).

    Article  MATH  Google Scholar 

  18. F. Auricchio, “A Robust Integration-Algorithm for a Finite-Strain Shape-Memory-Alloy Superelastic Model,” Int. J. Plasticity 17(7), 971–990 (2001).

    Article  MATH  Google Scholar 

  19. B. Kleuter, A. Menzel, and P. Steinmann, “Generalized Parameter Identification for Finite Viscoelasticity,” Comput.Meth. Appl.Mech. Eng. 196(35–36), 3315–3334 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Ibrahimbegovic and L. Chorfi, “Viscoplasticity Model at Finite Deformations with Combined Isotropic and Kinematic Hardening,” Comput. Struct. 77(5), 509–525 (2000).

    Article  Google Scholar 

  21. P. Betsch and E. Stein, “Numerical Implementation of Multiplicative Elasto-Plasticity into Assumed Strain Elements with Application to Shells at Large Strains,” Comput. Meth. Appl. Mech. Eng. 179(3–4), 215–245 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  22. L. I. Sedov, Introduction to Continium Mechanics (Fizmatgiz, Moscow, 1962).

    Google Scholar 

  23. M. Kleiber, J. A. König, and A. Sawczuk, “Studies on Plastic Structures: Stability, Anisotropic Hardening Cyclic Loads,” Comput.Meth. Appl.Mech. Eng. 33(1–3), 487–556 (1982).

    Article  MATH  Google Scholar 

  24. J. C. Nactegaal and J. E. De Long, “Some Computational Aspect of Elastic-Plastic Large Strain Analysis,” Int. J. Numer.Meth. Eng. 17(1), 15–41 (1981).

    Article  Google Scholar 

  25. W. M. Wang and L. J. Sluys, “Formulation of an Implicit Algorithm for Finite Deformation Viscoplasticity,” Int. J. Solids Struct. 37(48–50), 7329–7348 (2000).

    Article  MATH  Google Scholar 

  26. A.E. Greenand P.M. Naghdi, “Some Remarks on Elastic-Plastic Deformation at Finite Strain,” Int. J. Eng. Sci. 9(12), 1219–1229 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  27. H. M. Zbib, “On the Mechanics of Large Inelastic Deformations: Kinematics and Constitutive Modeling,” Acta Mech. 96(1–4), 119–138 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. D. Chernyshov, “Constitutive Equations for an Elastoplastic Body at Finite Strains,” Izv. Ross. Akad. Nauk., Mekh. Tvyordogo Tela, No. 1, 120–128 (2000).

  29. H.-P. Hackenberg and F. G. Kollmann, “A General Theory of Finite Inelastic Deformation of Metals Based on the Concept of Unified Constitutive Models,” Acta Mech. 110(1–4), 217–239 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Helm, “Stress Computation in Finite Thermoviscoplasticity,” Int. J. Plasticity 22(9), 1699–1727 (2006).

    Article  MATH  Google Scholar 

  31. W. Bier and S. Hartmann, “A Finite Strain Constitutive Model for Metal Powder Compaction Using a Unique and Convex Single Surface Yield Function,” Europ. J. Mech. A, Solids 25(6), 1009–1030 (2006).

    Article  MATH  Google Scholar 

  32. A. L. Eterovic and K.-J. Bathe, “A Hyperelastic-Based Large Strain Elasto-Plastic Constitutive Formulation with Combined Isotropic-Kinematic Hardening Using the Logarithmic Stress and Strain Measures,” Int. J. Numer. Meth. Eng. 30(6), 1099–1114 (1990).

    Article  MATH  Google Scholar 

  33. A. F. M. Arif, T. Pervez, and M. P. Mughal, “Performance of a Finite Element Procedure for Hyperelastic-Viscoplastic Large Deformation Problems,” Finite Elem. Anal. Design 34(1), 89–112 (2000).

    Article  MATH  Google Scholar 

  34. V. Tvergaard, “Effect of Large Elastic Strain on Cavitations Instability Prediction for Elastic-Plastic Solids,” Int. J. Solids Struct. 36(35), 5453–5466 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  35. R. I. Barja, “Bifurcation of Elastoplastic Solids to Shear Band Mode at Finite Strain,” Comput. Meth. Appl. Mech. Eng. 191(46), 5287–5314 (2002).

    Article  Google Scholar 

  36. C. Miehe, “A Theory of Large-Strain Isotropic Thermoplastisity Based on Metric Transformation Tensor,” Arch. Appl.Mech. 66(1–2), 45–64 (1995).

    MATH  Google Scholar 

  37. M. Harrysson and M. Ristinmaa, “Description of Evolving Anisotropy at Large Strains,” Mech. Materials 39(3), 267–282 (2007).

    Article  Google Scholar 

  38. M. Harrysson, A. Harrysson, and M. Ristinmaa, “Spatial Representation of Evolving Anisotropy at Large Strains,” Int. J. Solids Struct. 44(10), 3514–3532 (2007).

    Article  MATH  Google Scholar 

  39. A. I. Golovanov and S. A. Kuznetsov, “Computation of Large Deformations of Nonelastic Bodies in a Combined Lagrangien-Euler Formulation,” in Obzornye Doklady i lektsii XVI Sessii Mezhdunarodnoi Shkoly po Problemam Mekhaniki Sploshnoi Sredy ‘Modely Mekhaniki Sploshnoi Sredy’ (Tr. Matem. Tsentra im. N.I. Lobachevskogo, Kazan, 2002), Vol. 15, pp. 5–27.

    Google Scholar 

  40. Y. Basar and M. Itskov, “Constitutive Model and Finite Element Formulation for Large Strain Elasto-Plastic Analysis of Shell,” Comput. Mech. 23(5–6), 466–481 (1999).

    MATH  Google Scholar 

  41. Y. Basar and A. Eckstein, “Large Inelastic Strain Analysis by Multilayer Shell Elements,” Acta Mech. 141(3–4), 225–252 (2000).

    Article  MATH  Google Scholar 

  42. B. Nedjar, “Frameworks for Finite Strain Viscoelasticity Based on Multiplicative Decompositions. Part I: Continuum Formulations,” Comput. Meth. Appl. Mech. Eng. 191(15–16), 1541–1562 (2002).

    Article  MATH  Google Scholar 

  43. B. Nedjar, “Frameworks for Finite Strain Viscoelasticity Based on Multiplicative Decompositions. Part II: Computational Aspects,” Comput. Meth. Appl.Mech. Eng. 191(15–16), 1563–1593 (2002).

    Article  MATH  Google Scholar 

  44. C. Miehe, N. Apel, and M. Lambrecht, “Anisotropic Additive Plasticity in the Logarithmic Strain Space: Modular Kinematic Formulation and Implementation Based on Incremental Minimization Principles for Standard Materials,” Comput. Meth. Appl. Mech. Eng. 191(47–48), 5383–5425 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  45. R. C. Lin and W. Brocks, “On a Finite Strain Viscoplastic Theory Based on a New Internal Dissipation Inequality,” Int. J. Plasticity 20(7), 1281–1311 (2004).

    Article  MATH  Google Scholar 

  46. R. C. Lin, W. Brocks, and J. Betten, “On Internal Dissipation Inequalities and Finite Strain Inelastic Constitutive Laws: Theoretical and Numerical Comparisons,” Int. J. Plasticity 22(10), 1825–1857 (2006).

    Article  MATH  Google Scholar 

  47. B. Scheck and H. Stumpf, “The Appropriate Corotational Rate, Exact Formula for the Plastic Spin and Constitutive Model for Finite Elasto-Plasticity,” Int. J. Solids Struct. 32(24), 3643–3667 (1995).

    Article  Google Scholar 

  48. B. Scheck, W. M. Smolenski, and H. Stumpf, “A Shell Finite Element for Large Strain Elastoplasticity with Anisotropies. Part I: Shell Theory and Variational Principle,” Int. J. Solids Struct. 36(35), 5399–5424 (1999).

    Article  Google Scholar 

  49. B. Scheck, W. M. Smolenski, and H. Stumpf, “A Shell Finite Element for Large Strain Elastoplasticity with Anisotropies. Part II: Constitutive Equations and Numerical Applications,” Int. J. Solids Struct. 36(35), 5425–5451 (1999).

    Article  Google Scholar 

  50. K. Ghavam and R. Naghdabadi, “Hardening Materials Modeling in Finite Elastic-Plastic Deformations Based on the Stretch Tensor Decomposition,” Mater. Design 29(1), 161–172 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Golovanov.

Additional information

Original Russian Text © A.I. Golovanov, 2010, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, No. 7, pp. 16–30.

About this article

Cite this article

Golovanov, A.I. Kinematics of finite elastoplastic deformations. Russ Math. 54, 12–25 (2010). https://doi.org/10.3103/S1066369X10070029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X10070029

Key words and phrases

Navigation