Skip to main content
Log in

Coupling Effects of CH4/H2/Ar Gas Ratios and Hot Filament-Substrate Distance on the Growth of Nanocrystalline Diamond

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Due to the special shape of cutting or grinding tools used nowadays, hot filament (HF)-substrate distance is usually unavoidable during the process of diamond deposition by hot filament chemical vapor deposition (HFCVD), which will lead to difficult deposition process for nanocrystalline diamond (NCD). Based on this problem, the coupling effects of different CH4/H2/Ar gas ratios and HF-substrate distances on the growth of NCD films are systematically studied. SEM and Raman are used to analyze the surface morphology and sp3/sp2 contents of the diamond films deposited on different areas of each specimen. The results indicate that the proper increase of HF-substrate distance and concentration of CH4 or Ar encourage the growth of NCD. Under the condition of lower concentration of CH4 or Ar, NCD with uniform grain size can also be realized at a certain range of HF-substrate distance. A graph that shows the growth conditions of MCD, MCD/NCD and NCD is creatively presented by summarizing the deposition parameters and experimental results. This work provides a path to coat NCD onto the special-shaped cutting or grinding tools by HFCVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Inspektor, A., Oles, E.J., and Bauer, C.E., Theory and practice in diamond coated metal-cutting tools, Int. J. Refract. Met. Hard Mater., 1997, vol. 15, no. 1, pp. 49–56.

    Article  CAS  Google Scholar 

  2. Amirhaghi, S., Reehal, H.S., Wood, R.J.K., and Wheeler, D.W., Diamond coatings on tungsten carbide and their erosive wear properties, Surf. Coat. Technol., 2001, vol. 135, no. 2, pp. 126–138.

    Article  CAS  Google Scholar 

  3. Ye, W., Wei, Q., Long, Z., Li, H., Luo, J., Li, M., Deng, Z., Lin, C.T., and Zhou, K., Macroporous diamond foam: a novel design of 3D interconnected heat conduction network for thermal management, Mater. Des., 2018, vol. 156, pp. 32–41.

    Article  CAS  Google Scholar 

  4. Chen, N. and Sun, F., Experimental and first-principles studies of beta-Si3N4/diamond interface, J. Comput. Theor. Nanosci., 2012, vol. 9, no. 4, pp. 583–591.

    Article  CAS  Google Scholar 

  5. Almeida, F.A., Amaral, M., Oliveira, F.J., and Silva, R.F., Machining behavior of silicon nitride tools coated with micro-, submicro- and nanometric HFCVD diamond crystallite sizes, Diamond Relat. Mater., 2006, vol. 15, no. 11, pp. 2029–2034.

    Article  CAS  Google Scholar 

  6. Xie, Y., Zhou, J., Wei, Q., Yu, Z.M., Luo, H., Zhou, B., and Tang, Z.G., Improving the long-term stability of Ti6Al4V abutment screw by coating micro/nano-crystalline diamond films, J. Mech. Behav. Biomed. Mater., 2016, vol. 63, pp. 174–182.

    Article  CAS  Google Scholar 

  7. Shen, B., Bo, S., Lei, C., Lei, X., and Sun, F., Optimization on the HFCVD setup for the mass-production of diamond-coated micro-tools based on the FVM temperature simulation, Surf. Coat. Technol., 2014, vol. 253, no. 9, pp. 123–131.

    Article  CAS  Google Scholar 

  8. Sun, F., Ma, Y., Shen, B., Zhang, Z., and Ming, C., Fabrication and application of nano–microcrystalline composite diamond films on the interior hole surfaces of Co cemented tungsten carbide substrates, Diamond Relat. Mater., 2009, vol. 18, no. 2, pp. 276–282.

    Article  CAS  Google Scholar 

  9. Williams, O.A., Nesladek, M., Daenen, M., Michaelson, S., Hoffman, A., Osawa, E., Haenen, K., and Jackman, R.B., Growth, electronic properties and applications of nanodiamond, Diamond Relat. Mater., 2008, vol. 17, no. 7, pp. 1080–1088.

    Article  CAS  Google Scholar 

  10. Mccauley, T.G., Gruen, D.M., and Krauss, A.R., Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma, Appl. Phys. Lett., 1998, vol. 73, no. 12, p. 1646.

    Article  CAS  Google Scholar 

  11. Fang, Z.Z., Xu, W., Ryu, T., Hwang, K.S., and Sohn, H.Y., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 2, pp. 288–299.

    Article  CAS  Google Scholar 

  12. Wei, Q., Yang, T., Zhou, K.C., Li, M., Zheng, P., Jie, L., Zhang, D., Zhou, L., and Yu, Z.M., Effect of sputtered Mo interlayers on Si(100) substrates for the deposition of diamond film by hot filament chemical vapor deposition, Surf. Coat. Technol., 2013, vol. 232, no. 10, pp. 456–463.

    Article  CAS  Google Scholar 

  13. Davidson, J.L., Kang, W.P., and Wisitsora-At, A., Diamond field emission devices, Diamond Relat. Mater., 2003, vol. 12, no. 3, pp. 429–433.

    Article  CAS  Google Scholar 

  14. Specht, C.G., Williams, O.A., Jackman, R.B., and Schoepfer, R., Ordered growth of neurons on diamond, Biomaterials, 2004, vol. 25, no. 18, pp. 4073–4078.

    Article  CAS  PubMed  Google Scholar 

  15. Sekaric, L., Parpia, J.M., Craighead, H.G., Houston, B.H., and Butler, J.E., Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett., 2002, vol. 81, no. 23, pp. 4455–4457.

    Article  CAS  Google Scholar 

  16. Baldwin, J.W., Zalalutdinov, M.K., Feygelson, T., Pate, B.B., Butler, J.E., and Houston, B.H., Nanocrystalline diamond resonator array for RF signal processing, Diamond Relat. Mater., 2006, vol. 15, no. 11, pp. 2061–2067.

    Article  CAS  Google Scholar 

  17. Williams, O.A., Nanocrystalline diamond, Diamond Relat. Mater., 2011, vol. 20, no. 5, pp. 621–640.

    Article  CAS  Google Scholar 

  18. Sun, F.H., Zhang, Z.M., Chen, M., and Shen, H.S., Fabrication and application of high quality diamond-coated tools, J. Mater. Process. Technol., 2002, vol. 129, no. 1, pp. 435–440.

    Article  CAS  Google Scholar 

  19. Petherbridge, J.R., May, P.W., Pearce, S.R.J., Rosser, K.N., and Ashfold, M.N.R., Low temperature diamond growth using CO/CH plasmas: Molecular beam mass spectrometry and computer simulation investigations, J. Appl. Phys., 2001, vol. 89, no. 2, pp. 1484–1492.

    Article  CAS  Google Scholar 

  20. Hao, T., Zhang, H., Shi, C., and Han, G., Nano-crystalline diamond films synthesized at low temperature and low pressure by hot filament chemical vapor deposition, Surf. Coat. Technol., 2006, vol. 201, no. 3, pp. 801–806.

    Article  CAS  Google Scholar 

  21. Fraga, M.A., Contin, A., Rodríguez, L.A.A., Vieira, J., Campos, R.A., Corat, E.J., and Trava-Airoldi, V.J., Nano- and microcrystalline diamond deposition on pretreated WC–Co substrates: Structural properties and adhesion, Mater. Res. Express, 2016, vol. 3, no. 2, 025601.

    Article  CAS  Google Scholar 

  22. Li, H., Lee, H.J., Park, J. K., Baik, Y.J., Hwang, G.W., Jeong, J.H., and Lee, W.S., Control of abnormal grain inclusions in the nanocrystalline diamond film deposited by hot filament CVD, Diamond Relat. Mater., 2009, vol. 18, no. 11, pp. 1369–1374.

    Article  CAS  Google Scholar 

  23. Wei, Q.P., Yu, Z.M., Ma, L., Yin, D.F., and Ye, J., The effects of temperature on nanocrystalline diamond films deposited on WC–13 wt.% Co substrate with W–C gradient layer, Appl. Surf. Sci., 2009, vol. 256, no. 5, pp. 1322–1328.

    Article  CAS  Google Scholar 

  24. Passeri, D., Rinaldi, F., Ingallina, C., Carafa, M., Rossi, M., Terranova, M.L., and Marianecci, C., Biomedical applications of nanodiamonds: An overview, J. Nanosci. Nanotechnol., 2015, vol. 15, no. 2, pp. 972–988.

    Article  CAS  PubMed  Google Scholar 

  25. Barbosa, D.C., Hammer, P., Trava-Airoldi, V.J., and Corat, E.J., The valuable role of renucleation rate in ultrananocrystalline diamond growth, Diamond Relat. Mater., 2012, vol. 23, pp. 112–119.

    Article  CAS  Google Scholar 

  26. Wang, J., Zhou, J., Long, H.Y., Xie, Y.N., Zhang, X.W., Luo, H., Deng, Z.J., Wei, Q., Yu, Z.M., and Zhang, J., Tribological, anti-corrosive properties and biocompatibility of the micro- and nano-crystalline diamond coated Ti6Al4V, Surf. Coat. Technol., 2014, vol. 258, pp. 1032–1038.

    Article  CAS  Google Scholar 

  27. Mohr, M., Daccache, L., Horvat, S., Kai, B., Jacob, T., and Fecht, H.J., Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films, Acta Mater., 2017, vol. 122, pp. 92–98.

    Article  CAS  Google Scholar 

  28. Zhang, Y.F., Zhang, F., Gao, Q.J., Peng, X.F., and Lin, Z.D., The roles of argon addition in the hot filament chemical vapor deposition system, Diamond Relat. Mater., 2001, vol. 10, no. 8, pp. 1523–1527.

    Article  CAS  Google Scholar 

  29. Fuentes-Fernandez, E.M.A., Alcantar-Peña, J.J., Lee, G., Boulom, A., Phan, H., Smith, B., Nguyen, T., Sahoo, S., Ruiz-Zepeda, F., and Arellano-Jimenez, M.J., Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via hot filament chemical vapor deposition for scaling to large area applications, Thin Solid Films, 2016, vol. 603, pp. 62–68.

    Article  CAS  Google Scholar 

  30. Barbosa, D.C., Mengui, U.A., Baldan, M.R., Trava-Airoldi, V.J., and Corat, E.J., Effect of argon during diamond deposition by hot filament chemical vapor deposition, Mater. Sci. Forum, 2016, vol. 869, pp. 721–726.

    Article  Google Scholar 

  31. Wei, Q., Ashfold, M.N.R., Mankelevich, Yu.A., Yu, Z.M., Liu, P.Z., and Ma, L., Diamond growth on WC–Co substrates by hot filament chemical vapor deposition: Effect of filament–substrate separation, Diamond Relat. Mater., 2011, vol. 20, no. 5, pp. 641–650.

    Article  CAS  Google Scholar 

  32. Barbosa, D.C., Almeida, F.A., Silva, R.F., Ferreira, N.G., Trava-Airoldi, V.J., and Corat, E.J., Influence of substrate temperature on formation of ultrananocrystalline diamond films deposited by HFCVD argon-rich gas mixture, Diamond Relat. Mater., 2009, vol. 18, no. 10, pp. 1283–1288.

    Article  CAS  Google Scholar 

  33. May, P.W., Smith, J.A., and Mankelevich, Yu.A., Deposition of NCD films using hot filament CVD and Ar/CH4/H2 gas mixtures, Diamond Relat. Mater., 2006, vol. 15, no. 2, pp. 345–352.

    Article  CAS  Google Scholar 

  34. Sun, F.H., Zhang, Z.M., Shen, H.S., and Chen, M., Growth of nanocrystalline diamond films on Co-cemented tungsten carbide substrates by hot filament CVD, Mater. Sci. Forum, 2004, vols. 471–472, pp. 52–58.

    Article  Google Scholar 

  35. Yarbrough, W.A. and Messier, R., Current issues and problems in the chemical vapor deposition of diamond, Science, 1990, vol. 247, no. 4943, pp. 688–696.

    Article  CAS  PubMed  Google Scholar 

  36. Kumaran, C.R., Chandran, M., Surendra, M.K., Bhattacharya, S.S., and Rao, M.S.R., Growth and characterization of diamond particles, diamond films, and CNT-diamond composite films deposited simultaneously by hot filament CVD, J. Mater. Sci., 2015, vol. 50, no. 1, pp. 144–156.

    Article  CAS  Google Scholar 

  37. Pfeiffer, R., Kuzmany, H., Knoll, P., Bokova, S., Salk, N., and Günther, B., Evidence for trans-polyacetylene in nano-crystalline diamond films, Diamond Relat. Mater., 2003, vol. 12, nos. 3–7, pp. 268–271.

    Article  CAS  Google Scholar 

  38. Obraztsova, E.D., Korotushenko, K.G., Pimenov, S.M., Ralchenko, V.G., Smolin, A.A., Konov, V.I., and Loubnin, E.N., Raman and photoluminescence investigations of nanograined diamond films, Nanostruct. Mater., 1995, vol. 6, nos. 5–8, pp. 827–830.

    Article  Google Scholar 

  39. Kuzmany, H., Pfeiffer, R., Salk, N., and Günther, B., The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films, Carbon, 2004, vol. 42, no. 5, pp. 911–917.

    Article  CAS  Google Scholar 

  40. Uppireddi, K., Weiner, B.R., and Morell, G., Synthesis of nanocrystalline diamond films by DC plasma-assisted argon-rich hot filament chemical vapor deposition, Diamond Relat. Mater., 2008, vol. 17, no. 1, pp. 55–59.

    Article  CAS  Google Scholar 

  41. Wei, Q.P., Yu, Z.M., Ashfold, M.N.R., Ye, J., and Ma, L., Synthesis of micro- or nano-crystalline diamond films on WC–Co substrates with various pretreatments by hot filament chemical vapor deposition, Appl. Surf. Sci., 2010, vol. 256, no. 13, pp. 4357–4364.

    Article  CAS  Google Scholar 

  42. Lin, T., Yu, G.Y., Wee, A.T.S., and Shen, Z.X., Compositional mapping of the argon–methane–hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system, Appl. Phys. Lett., 2000, vol. 77, no. 17, pp. 2692–2694.

    Article  CAS  Google Scholar 

Download references

Funding

We want to thank the National Natural Science Foundation of China (no. 51601226), National Key Research and Development Program of China (no. 2016YEB0301402), the State Key Laboratory of Powder Metallurgy for financial support and Shenzhen 863 Test Center for characterization support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuping Wei.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biao Deng, Wei, Q., Yi, M. et al. Coupling Effects of CH4/H2/Ar Gas Ratios and Hot Filament-Substrate Distance on the Growth of Nanocrystalline Diamond. J. Superhard Mater. 42, 157–164 (2020). https://doi.org/10.3103/S106345762003003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106345762003003X

Navigation