Skip to main content
Log in

Studies of the ductile mode of cutting brittle materials (A review)

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Theoretical and experimental studies of the ductile mode of cutting brittle materials (semiconductors, ceramics, and glass) have been considered. The ductile mode of cutting has been based on the implementation of high-pressure-induced phase transformations in a material machined that followed by a cutting of a transformed amorphous layer, which makes it possible to avoid cracking. Publications on studies of phase transitions in brittle materials in the course of the indentation, scratching, friction, and cutting have been reviewed. It has been shown that the cutting depth, cutting edge radius of a tool, chip thickness, tool cutting edge inclination, and crystallographic orientation of a material machined and diamond tool as well as a type of lubricoolant are the decisive factors in implementing the ductile mode of cutting

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Domnich, V. and Gogotsi, Y., Phase Transformations in Silicon under Contact Loading, Rev. Adv. Mater. Sci., 2002, vol. 3, pp. 1–36.

    Article  CAS  Google Scholar 

  2. King, R. F. and Tabor, D., The Strength Properties and Frictional Behavior of Brittle Solids, in Proc. Royal Soc. London, Series A: Math. Phys. Sci., 1954, vol. 223, pp. 225–238.

    Article  Google Scholar 

  3. Huerta, M. and Malkin, S., Grinding of Glass: The Mechanics of the Process, ASME Transactions, 1976, vol. 98, pp. 459–467.

    Article  CAS  Google Scholar 

  4. Ngoi, B.K.A. and Sreejith, P.S., Ductile Regime Finish Machining—A Review, Int. J. Adv. Manuf. Technol., 2000, vol. 16, no. 8, pp. 547–550.

    Article  Google Scholar 

  5. Zhong Z.W., Ductile or Partial Ductile Mode Machining of Brittle Materials, ibid., 2003, vol. 21, no. 8, pp. 579–585.

    Article  Google Scholar 

  6. Pei, Z.J., Billingsley, S.R., and Miura S., Grinding Induced Subsurface Cracks in Silicon Wafers, Int. J. Machine Tools & Manufacture, 1999, vol. 39, no. 7, pp. 1103–1116.

    Article  Google Scholar 

  7. Pei, Z.J. and Strasbaugh, A., Fine Grinding of Silicon Wafers, ibid., 2001, vol. 41, no. 5, pp. 659–672.

    Article  Google Scholar 

  8. Stephenson, D.J., Surface Integrity Control during the Precision Machining of Brittle Materials, Advances in Technology of Materials and Materials Processing, 2006, vol. 8, no. 1, pp. 13–22.

    Google Scholar 

  9. Gogotsi, Y., Baek, C., and Kirscht, F., Raman Microspectroscopy Study of Processing-Induced Phase Transformations and Residual Stress in Silicon, Semiconductor Science and Technology, 1999, vol. 14, no. 10, pp. 936–944.

    Article  CAS  Google Scholar 

  10. Koinkar, V.N. and Bhushan, B., Scanning and Transmission Electron Microcopies of Single-Crystal Silicon Microworn/Machined Using Atomic Force Microscopy, J. Mater. Research, 1997, vol. 12, no. 12, pp. 3219–3224.

    Article  CAS  Google Scholar 

  11. Kunz, R.R., Clark, H.R., Nitishin, M., et al., High Resolution Studies of Crystalline Damage Induced by Lapping and Single-Point Diamond Machining of Si(100), ibid., 1996, vol. 11, no. 5, pp. 1228–1237.

    CAS  Google Scholar 

  12. Young, H.T., Liao, H.-T., and Huang, H.-Y., Surface Integrity of Silicon Wafers in Ultra Precision Machining, Int. J. Adv. Manuf. Technol., 2006, vol. 29, pp. 372–378.

    Article  Google Scholar 

  13. Gridneva, I.V., Milman, Y.V., and Trefilov, V.I., Phase Transition in Diamond-Structure Crystals during Hardness Measurements, Phys. Stat. Sol., 1972, vol. 14, no. 1, pp. 177–182

    Article  CAS  Google Scholar 

  14. Evans, T. and Sykes, J., Indentation Hardness of Two Types of Diamond in the Temperature Range 1500°C to 1850°C, Phil. Mag., 1974, vol. 29, no. 1, pp. 135–147

    Article  CAS  Google Scholar 

  15. Grigor’ev, O.N., Mil’man, Yu.V., and Trefilov, V.I., Special Features of the Deformation Mechanism and Parameters of Thermally Activation Motion of Dislocations in Diamond and Boron Nitride, in Elementarnye protsessy plasticheskoi deformatsii kristallov (Elementary Processes of Crystals Plastic Deformation), Kiev: Naukova Dumka, 1978, pp. 44–159.

    Google Scholar 

  16. Clarke, D.R., Kroll, M.C., Kirchner, P.D., et al., Amorphization and Conductivity of Silicon and Germanium Induced by Indentation, Phys. Rev. Lett., 1988, vol. 60, no. 21, pp. 2156–2159.

    Article  CAS  Google Scholar 

  17. Pharr, G.M., Oliver, W.C., and Clarke, D.R., The Mechanical Behavior of Silicon during Small-Scale Indentation, J. Electronic Mater., 1990, vol. 19, no. 9, pp. 881–887.

    Article  CAS  Google Scholar 

  18. Novikov, N.V., Dub, S.N., Milman, Yu.V., Gridneva, I.V., and Chugunova, S.I., Study of the Semiconductor-Metal Phase Transformation in Silicon by Nanoindentation, J. Superhard Mater., 1996, vol. 18, no. 3, pp. 32–41.

    Google Scholar 

  19. Kailer, A., Nickel, K.G., and Gogotsi, Y.G., Raman Microspectroscopy of Nanocrystalline and Amorphous Phases in Hardness Indentations, J. Raman Spectroscopy, 1999, vol. 30, no. 10, pp. 939–946.

    Article  CAS  Google Scholar 

  20. Milman, Yu.V., Chugunova, S.I., Goncharova, I.V., et al., Physics of Deformation and Fracture at Impact Loading and Penetration, Int. J. Impact Engineering, 2006, vol. 33, nos. 1–12, pp. 452–462.

    Article  Google Scholar 

  21. Khayyat, M.M.O., Hasko, D.G., and Chaudhri, M.M., Effect of Sample Temperature on the Indentation-Induced Phase Transitions In Crystalline Silicon, J. Appl. Phys., 2007, vol. 101, no. 8, art. 083515.

    Google Scholar 

  22. Mil’man, Yu.V., Phase Transformation under Pressure in Indentation, High Pressure Physics and Technics, 2011, vol. 21, no. 1, pp. 7–13.

    Google Scholar 

  23. Tanikella, B.V., Somasekhar, A.H., Sowers, A.T., et al., Phase Transformations during Microcutting Tests on Silicon, Appl. Phys. Lett., 1996, vol. 69, no. 19, pp. 2870–2872.

    Article  CAS  Google Scholar 

  24. Jasinevicius, R.G., Porto, A.J.V., Duduch, J.G., et al., Multiple Phase Silicon in Submicrometer Chips Removed by Diamond Turning, J. Braz. Soc. Mech. Sci. & Eng., 2005, XXVII, no. 4, pp. 440–448.

    Article  Google Scholar 

  25. Gogotsi, Y., Zhou, G.H., Ku, S.-S., et al., Raman Microspectroscopy Analysis of Pressure-Induced Metallization in Scratching of Silicon, Semiconductor Science and Technology, 2001, vol. 16, no. 5, pp. 345–352.

    Article  CAS  Google Scholar 

  26. Zhou, M., Ngoi, B.K.A., Zhong, Z.W., and Chin, C.S., Brittle-Ductile Transition in Diamond Cutting of Silicon Single Crystals, Materials and Manufacturing Processes, 2001, vol. 16, no. 4, pp. 447–460.

    Article  CAS  Google Scholar 

  27. Patten, J.A., Jacob, J., Bhattacharya, B., et al., Numerical Simulations and Cutting Experiments on Single Point Diamond Machining of Semiconductors and Ceramics, in Semiconductor Machining at the Micro-Nano Scale., Yan, J. and Patten, J., Eds., 2007, pp. 1–36.

    Google Scholar 

  28. Wu, H. and Melkote, S.N., Study of Ductile-to-Brittle Transition in Single Grit Diamond Scribing of Silicon: Application to Wire Sawing of Silicon Wafers, J. Engineering Mater. and Technology, 2012, vol. 134, no. 4, art. 041011.

    Google Scholar 

  29. Wu, H. and Melkote, S., Effect of Crystallographic Orientation on Ductile Scribing of Crystalline Silicon: Role of Phase Transformation and Slip, Materials Science and Engineering, A, 2012, vol. 549, pp. 200–205.

    Article  CAS  Google Scholar 

  30. Zhao, X.Z. and Bhushan, B., Material Removal Mechanisms of Single-Crystal Silicon on Nanoscale and at Ultralow Loads, Wear, 1998, vol. 223, no. 1–2, pp. 66–78.

    Article  CAS  Google Scholar 

  31. Youn, S.W. and Kang, C.G., A Study of Nanoscratch Experiments of the Silicon and Borosilicate in Air, Materials Science and Engineering, A, 2004, vol. 384, no. 1–2, pp. 275–283.

    Google Scholar 

  32. Koshimizu, S. and Otsuka, J., Detection of Ductile to Brittle Transition in Microindentation and Microscratching of Single Crystal Silicon Using Acoustic Emission, Machining Science and Technology, 2001, vol. 5, no. 1, pp. 101–114.

    Article  CAS  Google Scholar 

  33. Bhattacharya, B., Patten, J., and Jacob, J., Ductile to Brittle Transition Depths for CVD Silicon Carbide and Quartz, Int. J. Machining and Machinability of Materials, 2007, vol. 2, no. 1, pp. 17–36.

    Article  Google Scholar 

  34. Dong, L., Patten, J.A., and Miller, J.A., In-situ Infrared Detection and Heating of Metallic Phase of Silicon during Scratching Test, Int. J. Manufacturing Technology and Management, 2005, vol. 7, no. 5–6, pp. 530–539.

    Article  Google Scholar 

  35. Li, X.C., Lu, J.J., Wan, Z., et al., A Simple Approach to Fabricate Amorphous Silicon Pattern on Single Crystal Silicon, Tribology International, 2007, vol. 40, no. 2, pp. 360–364.

    Article  CAS  Google Scholar 

  36. Park, J.W., Lee, S.S., So, B.S., et al., Characteristics of Mask Layer on (100) Silicon Induced by Tribo-Nanolithography with Diamond Tip Cantilevers Based on AFM, J. Materials Processing Technology, 2007, vol. 187, pp. 321–325.

    Article  CAS  Google Scholar 

  37. Yu, B., Dong, H., Qian, L., et al., Friction-Induced Nanofabrication on Monocrystalline Silicon, Nanotechnology, 2009, vol. 20, no. 46, art. 465303.

    Google Scholar 

  38. Abdel-Aal, H.A., Patten, J.A., and Dong, L., On the Thermal Aspects of Ductile Regime Micro-Scratching of Single-Crystal Silicon for NEMS/MEMS Applications, Wear, 2005, vol. 259, nos. 7–12, pp. 1343–1351.

    Article  CAS  Google Scholar 

  39. Abdel-Aal, H.A., Reyes, Y., Patten, J.A., et al., Extending Electrical Resistivity Measurements in Micro-Scratching of Silicon to Determine Thermal Conductivity of the Metallic Phase Si-II, Materials Characterization, 2006, vol. 57, no. 4–5, pp. 281–289.

    Article  CAS  Google Scholar 

  40. Chung, K.H., Lee, Y.H., and Kim, D.E. Characteristics of Fracture during the Approach Process and Wear Mechanism of a Silicon AFM Tip, Ultramicroscopy, 2005, vol. 102, no. 2, pp. 161–171.

    Article  CAS  Google Scholar 

  41. Kim, H.J., Oh, T.S., and Kim, D.E., Comparison of Indentation and Scribing Behaviors of Crystalline and Initially Deformed Silicon Tips by Molecular Dynamics Simulation, IEEE Transactions on Magnetics, 2009, vol. 45, no. 5, pp. 2328–2331.

    Article  CAS  Google Scholar 

  42. Brinksmeier, E., Preub, W., Riemer, O., and Malz, R., Ductile to Brittle Transition Investigated by Plunge-Cut Experiments in Monocrystalline Silicon, in Proc. ASPE 1998 Spring Topical Meeting, vol. 17, pp. 55–58.

  43. Kovalchenko, A., Gogotsi, Y., Domnich, V., and Erdemir, A., Phase Transformation in Silicon under Dry and Lubricated Sliding, Tribology Transaction, 2002, vol. 45, no. 3, pp. 372–380.

    Article  CAS  Google Scholar 

  44. Li, X.C., Lu, J.J., and Yang, S., Tribological Behavior and Phase Transformation of Single-Crystal Silicon in Air, Tribology International, 2008, vol. 41, no. 3, pp. 189–194.

    Article  CAS  Google Scholar 

  45. Li, X., Lu, J., and Yang, S., Effect of Lubricant on Tribo-Induced Phase Transformation of Si, Tribology Letters, 2006, vol. 24, no. 1, pp. 61–66.

    Article  CAS  Google Scholar 

  46. Danyluk, S. and Reaves, R., Influence of Fluids on the Abrasion of Silicon by Diamond, Wear, 1982, vol. 77, no. 1, pp. 81–87.

    Article  CAS  Google Scholar 

  47. Li, X.C., Lu, J.J., Yang. S., et al., Effect of Counterpart on the Tribological Behavior and Tribo-Induced Phase Transformation of Si, Tribology International, 2009, vol. 42, no. 5, pp. 628–633.

    Article  CAS  Google Scholar 

  48. Cai, M.B., Li, X.P., Rahman M, High-Pressure Phase Transformation as the Mechanism of Ductile Chip Formation in Nanoscale Cutting of Silicon Wafer, Proc. Institution of Mechanical Engineers, Part B, 2007, vol. 221, pp. 1511–1519.

    Article  Google Scholar 

  49. Han, X.S., Hu, Y.Z., Yu, S., Molecular Dynamics Analysis Micro-Mechanism of Ductile Machining Single Crystal Silicon by Means of Nanometric Cutting Technology, J. Appl. Phys., 2008, vol. 42, no. 3, pp. 255–262.

    CAS  Google Scholar 

  50. Tang, Q. H. and Chen, F.H., MD Simulation of Phase Transformations due to Nanoscale Cutting on Silicon Monocrystals with Diamond Tip, J. Phys. D-Appl. Phys., 2006, vol. 39, no. 16, pp. 3674–3679.

    Article  CAS  Google Scholar 

  51. Tang, Y.L., Liang, Y.C., Huo, D.H., et al., Study on Nanometric Machining Process of Monocrystalline Si, Advances in Machining and Manufacturing Technology VIII, 2006, vol. 315–316, pp. 792–795.

    Google Scholar 

  52. Wu, H., Lin, B., Yu, S.Y., et al., Molecular Dynamics Simulation on the Mechanism of Nanometric Machining of Single-Crystal Silicon, Advances in Materials Manufacturing Science and Technology, 2004, vols. 471–472, pp. 144–148.

    Google Scholar 

  53. Liu, K. and Liu, X.D., Ductile-Mode Cutting of Brittle Materials for Wafer Fabrication. Technical Report, Singapore: Singapore Institute of Manufacturing Technology, 2004, pp. 101–106.

    Google Scholar 

  54. Jasinevicius, R.G., Influence of Cutting Conditions Scaling in the Machining of Semiconductors Crystals with Single Point Diamond Tool, J. Mater. Processing Technology, 2006, vol. 179, no. 1–3, pp. 111–116.

    Article  CAS  Google Scholar 

  55. Jasinevicius, R.G., dos Santos, F.J., Pizani P. S., et al., Surface Amorphization in Diamond Turning of Silicon Crystal Investigated by Transmission Electron Microscopy, J. Non-Crystalline Solids, 2000, vol. 272, no. 2–3, pp. 174–178.

    Article  CAS  Google Scholar 

  56. Tanaka, H., Shimada, S., and Ikawa, N., Brittle-Ductile Transition in Monocrystalline Silicon Analyzed by Molecular Dynamics Simulation, in Proc. Instn. Mech. Engrs. Part C, 2004, vol. 218, no. 6, pp. 582–590.

    Google Scholar 

  57. Tanaka, H., Shimada, S., and Anthony, L., Requirements for Ductile-Mode Machining Based on Deformation Analysis of Mono-Crystalline Silicon by Molecular Dynamics Simulation, CIRP Annals, 2007, vol. 56, no. 1, pp. 53–56.

    Article  Google Scholar 

  58. Cai, M., Li, X., and Rahman, M., Molecular Dynamics Modeling and Simulation of Nanoscale Ductile Cutting of Silicon, Int. J. Computer Applications in Technology, 2007, vol. 28, no. 1, pp. 2–8.

    Article  Google Scholar 

  59. Hung, N.P. and Fu Y.Q., Effect of Crystalline Orientation in the Ductile-Regime Machining of Silicon, Int. J. Advanced Manufacturing Technology, 2000, vol. 16, no. 12, pp. 871–876.

    Article  Google Scholar 

  60. Arefin, S., Li, X.P., Cai, M.B., et al., The Effect of the Cutting Edge Radius on a Machined Surface in the Nanoscale Ductile Mode Cutting of Silicon Wafer, in Proc. Institution Mechanical Engineers, Part B, 2007, vol. 221, no. 2, pp. 213–220.

    Article  Google Scholar 

  61. Arefin, S., Li, X.P., Rahman M., et al., The Upper Bound of Tool Edge Radius for Nanoscale Ductile Mode Cutting of Silicon Wafers, Int. J. Advanced Manufacturing Technology, 2007, vol. 31, no. 7–8, pp. 655–662.

    Google Scholar 

  62. Cai, M.B., Li, X.P., and Rahman, M., Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamics Simulation, Int. J. Machine Tools & Manufacture, 2007, vol. 47, no. 1, pp. 75–80.

    Article  Google Scholar 

  63. Cai, M.B., Li, X.P., Rahman, M., et al., Crack Initiation in Relation to the Tool Edge Radius and Cutting Conditions in Nanoscale Cutting of Silicon, ibid., 2007, vol. 47, no. 3–4, pp. 562–569.

    Article  Google Scholar 

  64. Li, X.P., Cai, M.B., Rahman, M., et al., Study of the Upper Bound of Tool Edge Radius in Nanoscale Ductile Mode Cutting of Silicon Wafer, Int. J. Advanced Manufacturing Technology, 2010, vol. 48, no. 9–12, pp. 993–999.

    Article  Google Scholar 

  65. Yan, J.W., Zhao, H.W., and Kuriyagawa, T, Effects of Tool Edge Radius on Ductile Machining of Silicon: an Investigation by FEM, Semiconductor Science and Technology, 2009, vol. 24, no. 7, art. 075018.

    Google Scholar 

  66. Blake, P.N. and Scattergood, R.O., Ductile-Regime Machining of Germanium and Silicon, J. Am. Ceramic Soc., 1990, vol. 73, no. 4, pp. 949–957.

    Article  CAS  Google Scholar 

  67. Ajjarapu, S.K., Patten, J.A., Cherukuri, H., et al., Numerical Simulations of Ductile Regime Machining of Silicon Nitride Using the Drucker-Prager Material Model, in Proc. of the Institution of Mechanical Engineers, Part C, 2004, vol. 218, no. 6, pp. 577–582.

    CAS  Google Scholar 

  68. Patten, J., Gao, W.I., and Yasuto, K., Ductile Regime Nanomachining of Single-Crystal Silicon Carbide, J. Manufacturing Science and Engineering, 2005, vol. 127, no. 3, p. 522–532.

    Article  Google Scholar 

  69. Bhattacharya, B., Patten, J.A., and Jacob, J., Single Point Diamond Turning of CVD Coated Silicon Carbide, in Proc. MSEC 2006, ASME Int. Conf. on Manufacturing Science and Engineering, Ypsilanti, MI, USA, October 8–11, 2006.

  70. Young, H.T., Huang, H.Y., and Yang, Y.J, A Fundamental Modeling Approach for Nano-Grinding of Silicon Wafers, in Progress on Advanced Manufacture for Micro/Nano Technology 2005, Parts 1 and 2, 2006, vol. 505–507, pp. 253–258.

    Google Scholar 

  71. Young, H.T., Liao, H.T., and Huang, H. Y., Novel Method to Investigate the Critical Depth of Cut of Ground Silicon Wafer, J. Materials Processing Technology, 2007, vol. 182, no. 1–3, pp. 157–162.

    Article  CAS  Google Scholar 

  72. Yan, J.W., Asami, T., Harada, H., et al., Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused by Diamond Machining, Precision Engineering, 2009, vol. 33, no. 4, pp. 378–386.

    Article  Google Scholar 

  73. Egashira, K. and Mizutani, K., Micro-Drilling of Monocrystalline Silicon Using a Cutting Tool, ibid., 2002, vol. 26, no. 4, pp. 263–268.

    Article  Google Scholar 

  74. Yan, J.W., Laser Micro-Raman Spectroscopy of Single-Point Diamond Machined Silicon Substrates, J. Appl. Phys., 2004, vol. 95, no. 4, pp. 2094–2101.

    Article  CAS  Google Scholar 

  75. Yan, J.W., Tamaki, J., Syoji, K., et al., Single-Point Diamond Turning of CaF2 for Nanometric Surface, Int. J. Advanced Manufacturing Technology, 2004, vol. 24, no. 9–10, pp. 640–646.

    Article  Google Scholar 

  76. Yan, J.W., Gai, X.H., and Kuriyagawa, T., Fabricating Nano Ribbons and Nano Fibers of Semiconductor Materials by Diamond Turning, J. Nanoscience and Nanotechnology, 2009, vol. 9, no. 2, pp. 1423–1427.

    Article  CAS  Google Scholar 

  77. Yan, J.W., Syoji, K., and Tamaki, J., Crystallographic Effects in Micro/Nanomachining, J. Vacuum Science & Technology B, 2004, vol. 22, no. 1, pp. 46–51.

    Article  CAS  Google Scholar 

  78. O’Connor, B.P., Marsh, E.R., and Couey, J.A., On the Effect of Crystallographic Orientation on Ductile Material Removal in Silicon, Precision Engineering, 2005, vol. 29, no. 1, pp. 124–132.

    Article  Google Scholar 

  79. Yan, J.W., Maekawa, K., Tamaki, J., et al., Experimental Study on the Ultraprecision Ductile Machinability of Single-Crystal Germanium, JSME Int. J., Series C, 2004, vol. 47, no. 1, pp. 29–36.

    Article  Google Scholar 

  80. Yan, J.W., Takahashi, Y., Tamaki, J., et al., Ultraprecision Machining Characteristics of Poly-Crystalline Germanium, ibid., 2006, vol. 49, no. 1, pp. 63–69.

    Article  CAS  Google Scholar 

  81. Venkatachalam, S., Predictive Modeling for Ductile Machining of Brittle Materials: PhD Dissertation, Atlanta, GA, USA: The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 2007.

    Google Scholar 

  82. Venkatachalam, S., Li, X.P., and Liang S.Y., Predictive Modeling of Transition Undeformed Chip Thickness in Ductile-Regime Micro-Machining of Single Crystal Brittle Materials, J. Materials Processing Technology, 2009, vol. 209, no. 7, pp. 3306–3319.

    Article  CAS  Google Scholar 

  83. Liu, K. and Li, X.P., Modeling of Ductile Cutting of Tungsten Carbide, Trans. NAMRI/SME, 2001, vol. 29, pp. 251–258.

    Google Scholar 

  84. Yan, J.W., Asami, T., Harada, H., et al., Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused By Diamond Machining, Precision Engineering, 2009, vol. 33, no. 4, pp. 378–386.

    Article  Google Scholar 

  85. Rusnaldy, T., Ko, J., and Kim, H.S., Micro-End-Milling of Single-Crystal Silicon, Int. J. Machine Tools & Manufacture, 2007, vol. 47, pp. 2111–2119.

    Article  Google Scholar 

  86. Jasinevicius, R.G., Duduch, J.G., and Pizani, P.S., Structure Evaluation of Submicrometer Silicon Chips Removed by Diamond Turning, Semiconductor Science and Technology, 2007, vol. 22, no. 5, pp. 561–573.

    Article  CAS  Google Scholar 

  87. Yan, J.W., Maekawa, K., Tamaki, J., et al., Microgrooving on Single-Crystal Germanium for Infrared Fresnel Lenses, J. Micromechanics and Microengineering, 2005, vol. 15, no. 10, pp. 1925–1931.

    Article  CAS  Google Scholar 

  88. Jasinevicius, R.G., Duduch, J.G., and Pizani, P.S., In-situ Raman Spectroscopy Analysis of Re-Crystallization Annealing Of Diamond Turned Silicon Crystal, J. Braz. Soc. of Mech. Sci. & Eng., 2007, vol. XXIX, no. 1, pp. 49–54.

    Article  Google Scholar 

  89. Jasinevicius, R.G., Duduch, J.G., Montanari, L., et al., Phase Transformation and Residual Stress Probed by Raman Spectroscopy in Diamond-Turned Single Crystal Silicon, in Proc. Institution of Mechanical Engineers, Part B, 2008, vol. 222, no. 9, pp. 1065–1073.

    Article  CAS  Google Scholar 

  90. Yan, J.W., Syoji, K., and Tamaki, J., Crystallographic Effects in Micro/Nanomachining, J. Vacuum Science & Technology B, 2004, vol. 22, no. 1, pp. 46–51.

    Article  CAS  Google Scholar 

  91. Fang, F.Z., Wu, H., Zhou, W., et al., A Study on Mechanism of Nano-Cutting Single-Crystal Silicon, J. Materials Processing Technology, 2007, vol. 184, no. 1–3, pp. 407–410.

    Article  CAS  Google Scholar 

  92. Pizani, P.S., Lanciotti, F., Jasinevicius, R.G., et al., Raman Characterization of Structural Disorder and Residual Strains in Micromachined GaAs, J. Appl. Phys., 2000, vol. 87, no. 3, pp. 1280–1283.

    Article  CAS  Google Scholar 

  93. Jasinevicius, R.G. and Pizani, P.S., Annealing Treatment of Amorphous Silicon Generated by Single Point Diamond Turning, Int. J. Advanced Manufacturing Technology, 2007, vol. 34, pp. 680–688.

    Article  Google Scholar 

  94. Morris, J.C., Callahan, D.L., Kulik, J., et al., Origins of the Ductile Regime in Single-Point Diamond Turning of Semiconductors, J. Am. Ceramic Soc., 1995, vol. 78, no. 8, pp. 2015–2020.

    Article  CAS  Google Scholar 

  95. Puttic, K.E., Whitmore, L.C., Zhdan, P., et al., Energy Scaling Transitions in Machining of Silicon by Diamond, Tribology Int., 1995, vol. 28, no. 6, pp. 349–355.

    Article  Google Scholar 

  96. Cheung, C.F., To, S., and Lee, W.B.., Anisotropy of Surface Roughness in Diamond Turning of Brittle Single Crystals, Materials and Manufacturing Processes, 2002, vol. 17, no 2, pp. 251–267.

    Article  CAS  Google Scholar 

  97. Young, H.T., Huang, H.Y., and Lee, W.B., A Fundamental Modeling Approach for Nano-Grinding of Silicon Wafers, Progress Advanced Manufacture for Micro/Nano Technology, 2005, Parts 1 and 2, 2006, vol. 505–507, pp. 253–258.

    Google Scholar 

  98. Young H. T., Liao H. T., and Huang, H.-Y., Novel Method to Investigate the Critical Depth of Cut of Ground Silicon Wafer, J. Materials Processing Technology, 2007, vol. 182, no. 1–3, pp. 157–162.

    Article  CAS  Google Scholar 

  99. O’Connor, B.P., The Effect of Crystallographic Orientation on Ductile Material Removal in Silicon, Master of Science Thesis, University Park, PA, USA: The Graduate School, College of Engineering, The Pennsylvania State University, 2002.

    Google Scholar 

  100. Leung, T.P., Lee, W.B., and Lu, X.M., Diamond Turning of Silicon Substrates in Ductile-Regime, J. Materials Processing Technology, 1998, vol. 73, no. 1–3, pp. 42–48.

    Article  Google Scholar 

  101. Yan, J.W., Syoji, K., Kuriyagawa, T., et al., Ductile, Regime Turning at Large Tool Feed, ibid., 2002, vol. 121, no. 2–3, pp. 363–372.

    Article  Google Scholar 

  102. Komanduri, R., Chandrasekaran, N., and Raff, L.M., Molecular Dynamics Simulation of the Nanometric Cutting of Silicon, Phil. Mag. B, 2001, vol. 81, no. 12, pp. 1989–2019.

    Article  CAS  Google Scholar 

  103. Rusnaldy, T., Ko, J., and Kim, H.S., An Experimental Study on Microcutting of Silicon Using a Micromilling Machine, Int. J. Advanced Manufacturing Technology, 2008, vol. 39, no. 1–2, pp. 85–91.

    Article  Google Scholar 

  104. Yan, J., Asami, T., and Kuriyagawa, T., Response of Machining-Damaged Single-Crystalline Silicon Wafers to Nanosecond Pulsed Laser Irradiation, Semiconductor Science and Technology, 2007, vol. 22, no. 4, pp. 392–395.

    Article  CAS  Google Scholar 

  105. Dong, L. In-situ Detection and Heating of High Pressure Metallic Phase of Silicon During Scratching, PhD Dissertation, Charlotte, NC, USA: University of North Carolina, 2006.

    Google Scholar 

  106. Dong, L. and Patten, J.A., Real Time Infrared (IR) Thermal Imaging of Laser-Heated High Pressure Phase of Silicon in Proc. of Advanced Laser Applications Conf. & Expo (ALAC 2007), Boston, Sept. 24–25, 2007.

  107. Amer, M.S., Dosser, L., LeClair, S., et al., Induced Stresses and Structural Changes in Silicon Wafers as a result of Laser Micro-Machining, Appl. Surface Science, 2002, vol. 187, no. 3–4, pp. 291–296.

    Article  CAS  Google Scholar 

  108. Amer, M.S., El-Ashry, M.A., Dosser, L.R., et al., Femtosecond versus Nanosecond Laser Machining: Comparison of Induced Stresses and Structural Changes in Silicon Wafers, ibid., 2005, vol. 242, pp. 162–167.

    Article  CAS  Google Scholar 

  109. Shayan, A.R., Poyraz, H.B., Ravindra, D., and Patten, J.A., Pressure and Temperature Effects in Micro-Laser Assisted Machining (μ-lam) of Silicon Carbide, Transactions of NAMRI/SME, 2009, vol. 37, pp. 75–80.

    Google Scholar 

  110. Yan, J.W., Syoji, K., and Tamaki, J.., Some Observations on the Wear of Diamond Tools in Ultra-Precision Cutting of Single-Crystal Silicon, Wear, 2003, vol. 255, no. 7–12, pp. 1380–1387.

    Article  CAS  Google Scholar 

  111. Uddin, M.S., Seah, K.H.W., Li, X.P., et al., Effect of Crystallographic Orientation on Wear of Diamond Tools for Nano-Scale Ductile Cutting of Silicon, ibid., 2004, vol. 257, no. 7–8, pp. 751–759.

    Google Scholar 

  112. Uddin, M.S., Seah, K.H.W., Rahman, M., et al., Performance of Single Crystal Diamond Tools in Ductile Mode Cutting of Silicon, J. Materials Processing Technology, 2007, vol. 185, no. 1–3, pp. 24–30.

    Article  CAS  Google Scholar 

  113. Li, X.P., He, T., and Rahman, M., Tool Wear Characteristics and their Effects on Nanoscale Ductile Mode Cutting of Silicon Wafer, Wear, 2005, vol. 259, no. 7–12, pp. 1207–1214.

    Article  CAS  Google Scholar 

  114. Born, D.K. and Goodman, W.A., An Empirical Survey on the Influence of Machining Parameters on Tool Wear in Diamond Turning of Large Single-Crystal Silicon Optics, Precision Engineering, 2001, vol. 25, no. 4, pp. 247–257.

    Article  Google Scholar 

  115. Durazo-Cardenas, I., Shore, P., Luo, X., et al., 3D Characterization of Tool Wear Whilst Diamond Turning Silicon, Wear, 2007, vol. 262, no. 3–4, pp. 340–349.

    Article  CAS  Google Scholar 

  116. Li, X.P., Cai M.B., Neo, W.C.L., et al., Effect of Crystalline Orientation of a Diamond Tool on the Machined Surface in Ductile Mode Cutting of Silicon, in Proc. Institution of Mechanical Eng. B, 2008, vol. 222, no. 12, pp. 1597–1603.

    Article  CAS  Google Scholar 

  117. Cai, M.B., Li, X.P., and Rahman, M., Characteristics of “Dynamic Hard Particles” in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon with Diamond Tools in Relation to Tool Groove Wear, Wear, 2007, vol. 263, no. 7–12, pp. 1459–1466.

    Article  CAS  Google Scholar 

  118. Cai, M.B., Li, X.P., and Rahman, M., Study of the Mechanism of Groove Wear of the Diamond Tool in Nanoscale Ductile Mode Cutting of Monocrystalline Silicon, J. Manufacturing Science and Engineering, 2007, vol. 129, no. 2, pp. 281–286.

    Article  Google Scholar 

  119. Yan, J., Tamaki, J., Syoji, K., et al., Development of a Novel Ductile-Machining System for Fabricating Axisymmetric Aspheric Surfaces on Brittle Materials, Advances in Abrasive Technology, 2003, vol. 238, no. 2, pp. 43–48.

    Google Scholar 

  120. Yin, L., Vancoille, E.Y.J., Lee, L.C., et al., High-Precision Low-Damage Grinding of Polycrystalline SiC, ibid., 2003, vol. 238, no. 2, pp. 59–64.

    Google Scholar 

  121. Bifano, T., Yi, Y., and Kahl, K., Fixed Abrasive Grinding of CVD SiC Mirrors, Precision Engineering, 1994, vol. 16, no. 2, pp. 109–116.

    Article  Google Scholar 

  122. Yoshino, M., Ogawa, Y., and Aravindan, S., Machining of Hard-Brittle Materials by a Single Point Tool under External Hydrostatic Pressure, J. Manufacturing Science and Engineering-Transactions of the ASME, 2005, vol. 127, no. 4, pp. 837–845.

    Article  Google Scholar 

  123. Venkatesh, V.C., Precision Manufacture of Spherical and Aspheric Surfaces on Plastics, Glass, Silicon and Germanium, Current Science, 2003, vol. 84, no. 9, pp. 1211–1219.

    CAS  Google Scholar 

  124. Demirci, I., Mezghani, S., Mkaddem, A., et al., Effects of Abrasive Tools on Surface Finishing under Brittle-Ductile Grinding Regimes when Manufacturing Glass, J. Materials Processing Technology, 2010, vol. 210, no. 3, pp. 466–473.

    Article  CAS  Google Scholar 

  125. Bandyopadhyay, B.P., Ohmori, H., and Takahashi, I., Ductile Regime Mirror Finish Grinding of Ceramics with Electrolytic In-Process Dressing (ELID) Grinding, Materials and Manufacturing Processes, 1996, vol. 11, no. 5, pp. 789–801.

    Article  CAS  Google Scholar 

  126. Bandyopadhyay, B.P. and Ohmori, H., The Effect of ELID Grinding on the Flexural Strength of Silicon Nitride, Int. J. Machine Tools & Manufacture, 1999, vol. 39, no. 5, pp. 839–853.

    Article  Google Scholar 

  127. Sun, Y.L., Zuo, D.W., Zhu, Y.,W., et al., Surface Formation of Single Silicon Wafer Polished with Nano-Sized Al2O3 Powders, Chinese J. Chem. Phys., 2007, vol. 20, no. 6, pp. 643–648.

    Article  CAS  Google Scholar 

  128. Zuo, D.W., Sun, Y.L., Zhao, Y., et al., Basic Research on Polishing with Ice Bonded Nanoabrasive Pad, J. Vacuum Science & Technology B, 2009, vol. 27, no. 3, pp. 1514–1519.

    Article  CAS  Google Scholar 

  129. Hou, Z., Ge, P., Zhang, J., Li, S., and Gao, Y., Experimental Research to Cut Crystal Silicon Using Diamond Wire Saw, Diamond and Abrasive Engineering, 2007, vol. 5, pp. 14–16.

    Google Scholar 

  130. Gao, Y., Ge, P., and Hou, Z., Study on Removal Mechanism of Fixed-Abrasive Diamond Wire Saw Slicing Monocrystalline Silicon, Key Engineering Materials, 2008, vol. 359–360, pp. 450–454.

    Article  Google Scholar 

  131. Gao, Y. and Ge, P., Experimental Investigation on Brittle-Ductile Transition in Electroplated Diamond Wire Saw Machining Single Crystal Silicon, ibid., 2010, vol. 431–432, pp. 265–268.

    Google Scholar 

  132. Teomete, E., Roughness Damage Evolution due to Wire Saw Process, Int. J. Precision Engineering and Manufacturing, 2011, vol. 12, no. 6, pp. 941–947.

    Article  Google Scholar 

  133. Teomete, E., Effect of Process Parameters on Surface Quality for Wire Saw Cutting of Alumina Ceramic, Gazi University J. Science, 2011, vol. 24, no. 2, pp. 291–297.

    Google Scholar 

  134. Huang, B., Gao, Y., and Ge, P., Study on Surface Defect and Wire Wear Mechanism during Single Crystal Silicon Slicing with Electroplated Diamond Wire Saw, Diamond and Abras. Eng., 2011, vol. 30, no. 1, pp. 53–57.

    Google Scholar 

  135. Wu, H., Melkote, S.N., and Danyluk, S., Mechanical Strength of Silicon Wafers Cut By Loose Abrasive Slurry and Fixed Abrasive Diamond Wire Sawing, Advanced Engineering Materials, 2012, vol. 14, no. 5, pp. 342–348.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.M. Kovalchenko, 2013, published in Sverkhtverdye Materialy, 2013, Vol. 35, No. 5, pp. 3–28.

About this article

Cite this article

Kovalchenko, A.M. Studies of the ductile mode of cutting brittle materials (A review). J. Superhard Mater. 35, 259–276 (2013). https://doi.org/10.3103/S1063457613050018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457613050018

Keywords

Navigation