Skip to main content
Log in

On the development of nanostructured WC-Co hard alloys

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A dimensional region of the existence of WC nanoparticles and nanostructured WC-Co hard alloys has been substantiated. It has been shown that the existing technologies do not allow to obtain pore- free WC-Co hard alloys with carbide particles of size 5–40 nm to be produced. A method of the formation of nanostructured hard alloys has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fal’kovskii, V.A., Klyachko, L.I., and Smirnov, V.A., Nanokristallicheskie i ul’tradispersnye poroshki vol’frama, karbida vol’frama i vol’framokobal’tovye tverdye splavy na ikh osnove (Nanocrystalline and Ultradispersed Powders of Tungsten, Tungsten Carbide, and Tungsten-Cobalt Hard Alloys Based on Them), Moscow: Izd. FGUP VNIITS, 2005.

    Google Scholar 

  2. Panov, V.S., Nanotechnologies in Production of Hard Alloys, Izvestiya VUZov, Nonferrous Metallurgy, 2007, no. 2, pp. 63–68.

  3. Zak, Fang, Xu, Wang, Taegong, Ryu, et al., Synthesis, Sintering and Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide. A Review, Int. J. Refrac. Metals Hard Mater., 2009, vol. 27, pp. 288–299.

    Article  CAS  Google Scholar 

  4. Henjered, A., Hellsing, M., Andres, H.O., and Norden, H., The Presence of Cobalt at WC/WC Interfaces, Proc. Int. Conf. on Sci. Hard Mater., Rhodes, 23–28 Sept. 1984, Boston, Bristol, 1986, pp. 303–309.

  5. Gleser, A.M., Amorphous and Nanocrystalline Structures: Similarity, Distinctions, Mutual Transitions, Russian Chemical Journal, 2002, vol. 46, no. 5, pp. 50–56.

    Google Scholar 

  6. Gryaznov, V.G., Karpelov, A.E., and Romanov, A.E., Crystalline Stability of Dislocations in Microcrystals, Pis’ma ZhTF, 1989, vol. 15, no. 2, pp. 39–44.

    Google Scholar 

  7. Gryaznov, V.G., Polonsky, I.A., Romanov, A.E., and Trusov, L.I., Size Effect of Dislocation Stability in Nanocrystals, Phys. Rev. B, 1991, vol. 44, pp. 42–46.

    Article  Google Scholar 

  8. Lisovskii, A.F., Thermodynamics of the Interaction of a Group of Nanoparticles with a Macrophase, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 379–383.

    Article  Google Scholar 

  9. Lisovsky, A.F., Formation of Nonequilibrium Dihedral Angles in Composite Materials, Int. J. Powder Metall., 1990, vol. 26, no. 1, pp. 45–49.

    Google Scholar 

  10. Lisovskii, A.F., MMI-Phenomenon: Scientific Substantiation and Practical Application, J. Superhard Mater., 2001, vol. 23, no. 1, pp.1–8.

    Google Scholar 

  11. Lisovsky, A.F., Formirovanie struktury kompozitsionnykh materialov pri obrabotke metallicheskimi rasplavami (Structure Formation of Composite Materials during the Metal Melt Treatment), Kiev: Naukova Dumka, 2008.

    Google Scholar 

  12. Lisovsky, A.F., Thermodynamics of Isolated Pores Filling with Liquid in Sintered Composite Materials, Metall. Mater. Trans. A, 1994, vol. 25, pp. 733–740.

    Article  Google Scholar 

  13. Lisovskii, A.F., On the Filling of a Pore in a Solid-Liquid Nanodispersed System, J. Superhard Mater., 2008, vol. 30, no. 5, pp. 326–332.

    Article  Google Scholar 

  14. Tumanov, V.I., Funke, V.F., Belen’kaya, L.I, and Usol’tseva, L.G., Effect of Alloying on the Surface Tension of Iron Group Metals, Izv. AN USSR. OTN Metallurgy and Fuel, 1962, no. 6, pp. 43–48.

  15. Chaporova, I.N. and Chernyavskii, K.S., Struktura spechennykh tverdykh splavov (Structure of Cemented Tungsten Carbides), Moscow: Metallurgiya, 1975.

    Google Scholar 

  16. Spriggs, G.E., History of Fine Grained Hardmetal, Int. J. Refract. Metals Hard Mater., 1995, vol. 13, no. 5, pp. 241–251.

    Article  CAS  Google Scholar 

  17. Hojo, J., Oku, T., and Kato, A., Tungsten Carbide Powders Produced by the Vapor Phase Reaction of the WCl6-CH4-H2 System, J. Less-Common Metal., 1978, vol. 59, no. 1, pp. 85–95.

    Article  CAS  Google Scholar 

  18. Bartha, L., Atato, P., Toth, A.L., et al., Investigation of HIP-Sintering of Nanocrystalline WC/Co Powder, J. Adv. Mater., 2000, vol. 32, no. 3, pp. 23–26.

    CAS  Google Scholar 

  19. Carroll, D.F., Sintering and Microstructural Development in WC/Co-Based Alloys Made with Superfine WC Powder, Int. J. Refract. Metals Hard Mater., 1999, vol. 17, nos. 1–3, pp. 123–132.

    Article  CAS  Google Scholar 

  20. Fang, Z.Z. and Eason, J.W., Study of Nanostructured WC-Co Composites, ibid., 1995, vol. 13, no. 5, pp. 297–303.

    CAS  Google Scholar 

  21. Lin, C.G., Kny, E., Yuan, G.S., and Djuricic, B., Microstructure and Properties of Ultrafine WC-0.6VC-10Co Hardmetals Densified by Pressure-Assisted Critical Liquid Phase Sintering, J. Alloys Compd., 2004, vol. 383, nos. 1–2, pp. 98–102.

    Article  CAS  Google Scholar 

  22. Azcona, I., Ordonez, A., Sanchez, J.M., and Castro, F., Hot Isostatic Pressing of Ultrafine Tungsten Carbide-Cobalt Hardmetals, J Mater. Sci., 2002, vol. 37, no. 19, pp. 4189–4195.

    Article  CAS  Google Scholar 

  23. Sivaprahasam, D., Chandrasekar, S.B., and Sundaresan, R., Microstructure and Mechanical Properties of Nanocrystalline WC-12Co Consolidated by Spark Plasma Sintering, Int. J Refract. Metals Hard Mater., 2007, vol. 25, no. 2, pp. 144–152.

    Article  CAS  Google Scholar 

  24. Kim, H.C., Shon, I.J., Jeong, I.K., et al., Rapid Sintering of Ultrafine WC and WC-Co Hard Materials by High-Frequency Induction Heated Sintering and Their Mechanical Properties, Metal Mater. Int., 2007, vol. 13, no. 1, pp. 39–45.

    Article  CAS  Google Scholar 

  25. Dubensky, E.M. and Nilsson, R.T., US Patent 5 773 735, 1996.

  26. Michalski, A. and Siemiaszko, D., Nanocrystalline Cemented Carbides Sintered by the Pulse Plasma Method, Int. J. Refract. Metal and Hard Mater., 2007, vol. 25, no. 2, pp. 153–158.

    Article  CAS  Google Scholar 

  27. Wang, X., Fang, Z., and Sohn, H.Y., Nanocrystalline Cemented Tungsten Carbide Sintered by an Ultra-High-Pressure Rapid Hot Consolidation Process, Proc. Int. Conf. on Powder Metallurgy & Particulate Materials, Engquist, J., Ed., Denver, USA, 2007, pp. 8–10.

  28. McCandlish, L.E., Kear, B.H., and Kim, B.K., Processing and Properties of Nanostructured WC-Co, Nanostruct. Mater., 1992, vol. 1, no. 2, pp. 119–125.

    Article  CAS  Google Scholar 

  29. Toth, R.E., Smid, I., Sherman, A., et al., Tough-Coated Hard Powders for Hardmetals of Novel Properties, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., and Wildner, H., Eds., Reutte: Plansee Holding AG, 2001, vol. 2, pp. 306–325.

    Google Scholar 

  30. Maistrenko, A.L., Ivanov, S.A., Pereyaslov, V.P., and Voloshin, M.N., Intensive Electric Sintering of Diamond-Based Composite Materials, J. Superhard Mater., 2000, vol. 22, no. 5, pp. 36–41.

    Google Scholar 

  31. Roebuck, B. and Almond, E.A., Deformation and Fracture Processes and Physical Metallurgy of WC-Co Hard Metals, Int. Mater. Rev., 1988, vol. 33, no. 2, pp. 90–110.

    CAS  Google Scholar 

  32. Munz, W.-D., Large-Scale Manufacturing of Nanoscale Multilayered Hard Coating Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering, MRS Bulletin, 2003, vol. 28, no. 3, pp. 173–179.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Lisovskii, 2010, published in Sverkhtverdye Materialy, 2010, Vol. 32, No. 6, pp. 31–40.

About this article

Cite this article

Lisovskii, A.F. On the development of nanostructured WC-Co hard alloys. J. Superhard Mater. 32, 389–395 (2010). https://doi.org/10.3103/S1063457610060043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457610060043

Key words

Navigation