Skip to main content
Log in

Review of Synthesis Methods, Microstructure and Properties of WC – Co-Based Hard Alloys

  • Published:
Metal Science and Heat Treatment Aims and scope

Advanced recent and traditional processes for synthesizing hard alloys based on WC – Co are reviewed. The mechanisms of grain compaction during sintering and the efficiencies of the grain growth inhibitors for repeated precipitation of WC grains are considered. The methods of pressure sintering and rapid sintering are studied. Advantages and disadvantages of different methods are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. L. Bartha, P. Atato, A. L. Toth, et al., “Investigation of hip-sintering of nanocrystalline WC_Co powder,” J. Adv. Mater., 32(3), 23 – 26 (2000).

    CAS  Google Scholar 

  2. D. F. Carroll, “Sintering and microstructural development in WC/Co-based alloys made with superfine WC powder,” Int. J. Refract. Metal Hard Mater., 17(1 – 3), 123 – 132 (1999).

    Article  CAS  Google Scholar 

  3. Z. Z. Fang, “Powder processing sintering and fracture toughness of sintered WC – Co using Nanocarb powder by Nano-dyne,” Unpublished data (1994).

  4. Z. Z. Fang and J. W. Eason, “Study of nanostructured WC – Co composites,” Int. J. Refract. Metal Hard Mater., 13(5), 297 – 303 (1995).

    Article  CAS  Google Scholar 

  5. L. E. Mc. Candlish, B. H. Kea, and B. K. Kim, “Processing and properties of nanostructured WC – Co,” Nanostruct. Mater., 1(2), 119 (1992).

  6. L. E. McCandlish, P. Seegopaul, and R. K. Sadangi, “Inhibition of WC grain growth during sintering of nanostructured WC – Co powder compacts,” Adv. Powder Metall. Particulate Mater., 313 – 317 (1995).

  7. R. Porat, S. Berger, and A. Rosen, “Dilatometric study of the sintering mechanism of nanocrystalline cemented carbides,” Nanostruct. Mater., 7(4), 429 – 436 (1996).

    Article  CAS  Google Scholar 

  8. L. Wu, et al., “Grain growth inhibition in sintering of nanostructured WC – Co alloys,” in: Proc. 13th Int. Plan See Seminar, Reute (1993), Vol. 3, pp. 667 – 669.

  9. L. Zhang and T. E. Madey, “Initial stages of sintering of nanostructured WC – 7 wt.% Co,” Nanostruct. Mater., 2(5), 487 – 493 (1993).

    Article  CAS  Google Scholar 

  10. I. Azcona, A. Ordonez, J. M. Sanchez, and F. Castro, “Hot isostatic pressing of ultrafine tungsten carbide-cobalt hard metals,” J. Mater. Sci., 37(19), 4189 – 4195 (2002).

    Article  ADS  CAS  Google Scholar 

  11. D. Agrawal, J. Cheng, P. Seegopaul, and L. Gao, “Grain growth control in microwave sintering of ultrafine WC – Co composite powder compacts,” Powder Metall., 43(1), 15 – 16 (2000).

    CAS  Google Scholar 

  12. E. Breval, J. P. Cheng, D. K. Agrawal, et al., “Comparison between microwave and conventional sintering of WC/Co composites,” Mater. Sci. Eng. A, 391(1 – 2), 285 – 295 (2005).

    Article  Google Scholar 

  13. Z. Q. Liu, T. Lin, and Z. M. Guo, “Consolidation of ultrafine binderless cemented carbide by spark plasma sintering,” J. Iron Steel Res. Int., 1482 – 1484 (2007).

  14. F. Zhang, J. Shen, and J. Sun, “The effect of phosphorus additions on densification, grain growth and properties of nanocrystalline WC – Co composites,” J. Alloys Compd., 385(1 – 2), 96 – 103 (2004).

    Article  CAS  Google Scholar 

  15. S. X. Zhao, X. Y. Song, J. X. Zhang, and X. M. Liu, “Effects of scale combination and contact condition of raw powders on SPS sintered near-nanocrystalline WC – Co alloy,” Mater. Sci. A, 473(1 – 2), 323 – 329 (2008).

    Article  Google Scholar 

  16. D. Sivaprahasam, S. B. Chandrasekar, and R. Sundaresan, “Microstructure and mechanical properties of nanocrystalline WC – 12Co consolidated by spark plasma sintering,” Int. J. Refract. Metal Hard Mater., 25(2), 144 – 152 (2007).

    Article  CAS  Google Scholar 

  17. H. F. Zhao, L. H. Zhu, and Q. W. Huang, “Nanocrystalline WC – 10% Co – 0.8% VC cemented carbides prepared by spark plasma sintering,” Rare Metal Mater. Eng., 34(1), 82 – 85 (2005).

    CAS  Google Scholar 

  18. Y. F. Xie, Y. Q. Wang, L. D. Chen, et al., “Preparation of superfine-cemented carbide by spark plasma sintering,” J. Wuhan Univ. Technol., 21(1), 42 – 45 (2006).

    Article  Google Scholar 

  19. G. Maizza, S. Grasso, Y. Sakka, et al., “Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder,” Sci. Technol. Adv. Mater., 8(7 – 8), 644 – 654 (2007).

    Article  CAS  Google Scholar 

  20. X. Q.Wang, Y. G. Xie, H. L. Guo, et al., “Sintering of WC – Co powder with nanocrystalline WC by spark plasma sintering,” Rare Metal., 25(3), 246 – 252 (2006).

    Article  Google Scholar 

  21. S. I. Cham S. H. Song, and B. K. Kim, “Spark plasma sintering behavior of nanocrystalline WC – 10Co cemented carbide powders,” Mater. Sci. Eng. A, 35(1 – 2), 31 – 38 (2003).

  22. C. C. Jia, H. Tang, X. Z. Mei, et al., “Spark plasma sintering of nanometer scale WC – Co powder,” Mater. Lett., 59(19 – 20), 256 – 2569 (2005).

    Google Scholar 

  23. L. Sun, C. C. Jia, C. G. Lin, and R. J. Cao, “VC addition prepared ultrafine WC – 11Co composites by spark plasma sintering,” J. Iron Steel Res. Int., 1485 – 1489 (2007).

  24. S. G. Huang, L. Li, K. Vanmeen, et al., “VC, Cr3C2 and NbC doped WC – Co cemented carbides prepared by pulsed electric current sintering,” Int. J. Refract. Metal Hard Mater., 25(5 – 6), 417 – 422 (2007).

    Article  CAS  Google Scholar 

  25. H. C. Kim, I. K. Jeong, I. J. Shon, et al., “Fabrication of WC – 8 wt.% Co hard materials by two rapid sintering processes,” Int. J. Refract. Metal Hard Mater., 25(4), 336 – 340 (2007).

    Article  CAS  Google Scholar 

  26. H. C. Kim, D. Y. Oh, and I. J. Shon, “Sintering of nanophase WC – 15 vol.% Co hard metals by rapid sintering process,” Int. J. Refract. Metal Hard Mater., 22(4), 197 – 2003 (2004).

    Article  CAS  Google Scholar 

  27. H. C. Kim, D. Y. Oh, and I. J. Shon, “Rapid sintering of ultrafine WC and WC – Cî hard materials by high-frequency induction heated sintering and their mechanical properties,” Int. J. Refract. Metal Hard Mater., 22(4 – 5), 197 – 2003 (2004).

    Article  CAS  Google Scholar 

  28. E. M. Dubensky and R. T. Nilsson, Dense Fine Grained Monotungsten Carbide Transition Metal Cemented Carbide Body and Preparation Thereof, Patent 5773735 US (1996).

  29. A. Michalski and D. Stemiaszko, “Nanocrystalline cemented carbides sintered by the pulse plasma method,” Int. J. Refract. Metal Hard Mater., 25(2), 153 – 158 (2007).

    Article  CAS  Google Scholar 

  30. X. Wang, Z. Fang, and H. Y. Sohn, “Nanocrystalline cemented tungsten carbide sintered by an ultra-high-pressure rapid hot consolidation process,” in: J. Engquist (ed.), Proceed. 2007 Int. Conf. on Powder Metallurgy & Particulate Materials, Denver, US (2007), pp. 8 – 10.

  31. J. M. Densley and J. P. Hirth, “Fracture toughness of a nanoscale WC – Co tool steel,” Scr. Mater., 38(92), 239 – 244 (1997).

    Article  Google Scholar 

  32. K. Jia, T. E. Fischer, and B. Gallois, “Microstructure, hardness and toughness of nanostructured and conventional WC – Co composites,” Nanostruct. Mater., 10(5), 875 – 891 (1998).

    Article  CAS  Google Scholar 

  33. W. D. Schubert, in: 2000 Int. Conf. on Tungsten Hard Metals and Refractory Alloys, Annapolis, MD, USA (2000).

  34. P. Maheshwari, Z. G. Z. Fang, and H. Y. Sohn, “Early-stage sintering densification and grain growth of nanostructured WC – Co powders,” Int. J. Powder. Metall., 43(2), 41 – 47 (2007).

    CAS  Google Scholar 

  35. G. R. Goren-Muginstein, S. Berger, and A. Rosen, “Sintering study of nanocrystalline tungsten carbide powders,” Nanostruct. Mater., 10(5), 795 – 804 (1998).

    Article  CAS  Google Scholar 

  36. X. Wang, Z. Z. Fang, and H. Y. Sohn, “Grain growth during the early stage of sintering of nanostructured WC – Co powder,” Int. J. Refract. Metal Hard Mater., 26(3), 232 – 241 (2008).

    Article  CAS  Google Scholar 

  37. F. Zhou, J. Lee, and E. J. Lavernia, “Grain growth kinetics of a mechanically milled nanocrystalline Al,” Scr. Mater., 44(8 – 9), 2013 – 2017 (2001).

    Article  CAS  Google Scholar 

  38. Z. J. Shen, H. Penf, J. Liu, and M. Nygren, “Conversion from nano- to micron-sized structures: experimental observations,” J. Eur. Ceram. Soc., 24(12), 3447 – 3452 (2004).

    Article  CAS  Google Scholar 

  39. S. Okuda, M. Kobiyama, T. Inami, and S. Takamura, “Thermal stability of nanocrystalline gold and copper prepared by gas deposition method,” Scr. Mater., 44(8 – 9), 2009 – 2012 (2001).

    Article  CAS  Google Scholar 

  40. R. Klemm, E. Thiele, C. Holste, et al., “Thermal stability of grain structure and defects in submicro crystalline and nanocrystalline nickel,” Scr. Mater., 46(9), 685 – 690 (2002).

    Article  CAS  Google Scholar 

  41. G. Hibbard, K. T. Auste, G. Palumbo, and U. Erb, “Thermal stability of electrodeposited nanocrystalline cobalt,” Scr. Mater., 44(3), 513 – 518 (2001).

    Article  CAS  Google Scholar 

  42. W. Disckenscheid, R. Birringer, H. Gleiter, et al., “Investigation of self-diffusion in nanocrystalline copper by NMR,” Solid State Commun., 79(8), 683 – 686 (1991).

    Article  ADS  Google Scholar 

  43. D. J. Chen and M. J. Mayo, “Densification and grain growth of ultrafine 3 mol.% Y2O3 – ZrO2 ceramics,” Nanostruct. Mater., 2(5), 469 – 478 (1993).

    Article  CAS  Google Scholar 

  44. R. K. Sadangi, L. E. McCandlish, B. H. Kear, and P. Seegopaul, “Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys,” Int. J. Powder Metall., 35(1), 27 – 33 (1999).

    CAS  Google Scholar 

  45. L. Sun, C. C. Ha, and M. Xian, “A research on the grain growth of WC – Co cemented carbide,” Int. J. Refract. Metal Hard Mater., 25(2), 21 – 24 (2007).

    Article  Google Scholar 

  46. C. G. Lin, E. Kby, G. S. Yuan, and B. Djuricic, “Microstructure and properties of ultrafine WC – 0.6VC – 10Co hard metal densified by pressure-assisted critical liquid phase sintering,” J. Alloys Compd., 383(1 – 2), 98 – 102 (2004).

    Article  CAS  Google Scholar 

  47. M. S. El-Eskamnarany, A. A. Mahday, H. A. Ahmed, and A. H. Amer, “Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC – Co powders and subsequent consolidations,” J. Alloys Compd., 312(1 – 2), 315 – 325 (2000).

    Article  Google Scholar 

  48. L. H. Zhu, Q. W. Huang, and H. F. Zhao, “Preparation of nanocrystalline WC – 10Co – 0.8VC by spark plasma sintering,” Mater. Sci. Lett., 22(22), 1631 – 1633 (2003).

    Article  CAS  Google Scholar 

  49. Z. A. Munir, U. Anselmi-Tamburrini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method,” J. Mater. Sci., 41(3), 763 – 777 (2006).

    Article  ADS  CAS  Google Scholar 

  50. J. R. Groza and A. Zavaliangos, “Nanostructured bulk solids by field activated sintering,” Rev. Adv. Mater. Sci., 5(1), 24 – 33 (2003).

    CAS  Google Scholar 

  51. E. N. Kablov, E. A. Lukina, A. V. Zavodov, and I. Yu. Efimochkin, “Formation of structure of hard alloys based on the WC – Co system with submicron grains in the presence of inhibiting additions,” Trudy VIAM, No. 4 – 5, 88 (2020).

  52. J. Garcia, V. G. Collado, A. Blomqvist, and B. Kaplan, “Cemented carbide microstructures: a review,” Int. J. Refract. Met. Hard Mater., 80, 40 – 68 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Kamolova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 60 – 66, September, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamolova, I.O., Saydakhmedov, R.K. Review of Synthesis Methods, Microstructure and Properties of WC – Co-Based Hard Alloys. Met Sci Heat Treat 65, 582–587 (2024). https://doi.org/10.1007/s11041-024-00973-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-024-00973-y

Keywords

Navigation