Skip to main content
Log in

On the Possibility of Using the Method of Sign-Perturbed Sums for the Processing of Dynamic Test Data

  • Mathematics
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

At the present time, the methods for the measurement and prediction of the dynamic strength of materials are complicated and unstandardized. An experimental data processing method based on the incubation time criterion is considered. Only a finite number of measurements containing random errors and limited statistical information are usually available in practice, since dynamic tests are laborious, and every individual test requires a lot of time. This strongly restricts the number of applicable data processing methods unless we are satisfied with approximate and heuristic solutions. The method of sign-perturbed sums (SPS) is used for the estimation of finite-sample confidence regions with a specified confidence probability under the assumption of noise symmetries. It is shown that several experimental points are sufficient to determine the strength parameter with an accuracy acceptable for engineering calculations. The applicability of the proposed method is demonstrated in the processing of a number of experiments on the dynamic fracture of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Campbell and W. G. Ferguson, “The temperature and strain-rate dependence of shear strength of mild steel,” Philos. Mag. 21, 63–82 (1970).

    Article  Google Scholar 

  2. A. J. Rosakis, J. Duffy, and L. B. Freund, “The determination of dynamic fracture toughness of alsi 4340 steel by the shadow spot method,” J. Mech. Phys. Solids 32, 443–460 (1984).

    Article  Google Scholar 

  3. D. A. Shockey, L. Seaman, and D. R. Curran, Material Behavior under High Stress and Ultrahigh Loading Rates (Springer-Verlag, New York, 1983).

    Google Scholar 

  4. G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech. 21, 31–48 (1985).

    Article  Google Scholar 

  5. V. S. Nikiforovsky and E. I. Shemyakin, Dynamic Fracture of Solids (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  6. K. Ravi-Chandar, “Experimental challenges in the investigation of dynamic fracture of brittle materials,” in Physical Aspects of Fracture (Kluwer, Dordrecht, 2001), in Ser.: NATO Science Series, Series II: Mathematics, Physics and Chemistry, Vol. 32, pp. 323–342.

    Article  Google Scholar 

  7. J. F. Kalthoff and S. Winkler, “Failure mode transition at high rates of shear loading,” in Proc. Int. Conf. on Impact Loading and Dynamic Behavior of Materials, Bremen, 1987 (DGM-Informationsgesellschaft, Oberursel, 1988), pp. 161–176.

    Google Scholar 

  8. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, “Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point,” J. Appl. Phys. 90, 136–143 (2001).

    Article  Google Scholar 

  9. Y. V. Petrov and A. A. Utkin, “Dependence of the dynamic strength on loading rate,” Mater. Sci. 25, 153–156 (1989).

    Article  Google Scholar 

  10. Y. V. Petrov, “Incubation time criterion and the pulsed strength of continua: Fracture, cavitation, and electrical breakdown,” Dokl. Phys. 49, 246–249 (2004).

    Article  Google Scholar 

  11. A. A. Gruzdkov and Y. V. Petrov, “Cavitation breakup of low-and high-viscosity liquids,” Tech. Phys. 53, 291–295 (2008).

    Article  Google Scholar 

  12. N. M. Pugno, “Dynamic quantized fracture mechanics,” Int. J. Fracture 140, 159–168 (2006).

    Article  MATH  Google Scholar 

  13. Q. Z. Wang, S. Zhang, and H. P. Xie, “Rock dynamic fracture toughness tested with holed-cracked flattened Brazilian discs diametrically impacted by SHPB and its size effect,” Exp. Mech. 50, 877–885 (2010).

    Article  Google Scholar 

  14. L. Ljung, System Identification: Theory for the User (Prentice Hall, Englewood Cliffs, NJ, 1999).

    MATH  Google Scholar 

  15. E.-W. Bai, K. M. Nagpal, and R. Tempo, “Bounded-error parameter estimation: Noise models and recursive algorithms,” Automatica 32, 985–999 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Blanchini and M. Sznaier, “A convex optimization approach to synthesizing bounded complexity HINF filters,” IEEE Trans. Autom. Control 57, 219–224 (2012).

    MATH  Google Scholar 

  17. B. Csaji, M. C. Campi, and E. Weyer, “Sign-perturbed sums: A new system identification approach for constructing exact non-asymptotic confidence regions in linear regression models,” IEEE Trans. Signal Process. 63, 169–181 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. H. Cho, Y. Ogata, and K. Kaneko, “Strain-rate dependency of the dynamic tensile strength of rock,” Int. J. Rock Mech. Min. Sci. 40, 763–777 (2003).

    Article  Google Scholar 

  19. M. Volkova, G. Volkov, O. Granichin, and Y. Petrov, “Sign-perturbed sums approach for data treatment of dynamic fracture tests,” in Proc. 56th IEEE Conf. on Decision and Control (CDC), Melbourne, Australia, Dec. 12–15, 2017 (IEEE, Piscataway, NJ, 2018), pp. 1652–1656. ## http://ieeexplore.ieee.org/document/8263887/

    Google Scholar 

  20. A. Senov, K. Amelin, N. Amelina, and O. Granichin, “Exact confidence regions for linear regression parameter under external arbitrary noise,” in Proc. 2014 American Control Conference (ACC 2014), Portland, OR, June 4–6, 2014 (IEEE, Piscataway, NJ, 2014), pp. 5097–5102.

    Google Scholar 

  21. A. A. Senov and O. N. Granichin, “Identification of linear regression parameters for arbitrary external noise in observations,” in Proc. 12th All-Russ. Meeting on Control Problems (VSPU-2014), Moscow, June 16–19, 2014 (Inst. Probl. Upr. im. V.A. Trapeznikova, Moscow, 2014), pp. 2708–2719.

    Google Scholar 

  22. K. Amelin and O. N. Granichin, “Randomized control strategies under arbitrary external noise,” IEEE Trans. Autom. Control 61, 1328–1333 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Volkova.

Additional information

Original Russian Text © M.V. Volkova, O.N. Granichin, G.A. Volkov, Yu.V. Petrov, 2018, published in Vestnik Sankt-Peterburgskogo Universiteta: Matematika, Mekhanika, Astronomiya, 2018, Vol. 63, No. 1, pp. 30–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, M.V., Granichin, O.N., Volkov, G.A. et al. On the Possibility of Using the Method of Sign-Perturbed Sums for the Processing of Dynamic Test Data. Vestnik St.Petersb. Univ.Math. 51, 23–30 (2018). https://doi.org/10.3103/S1063454118010132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063454118010132

Keywords

Navigation