Skip to main content
Log in

Features of Electrical and Magnetic Properties and Curie Point Behavior in Nanocomposites Based on Cd3As2 and MnAs

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A detailed study of the properties of nanocomposites based on Cd3As2 and MnAs with different concentrations of the magnetic phase and the effect of synthesis methods on the size of the crystallites and magnetic particles formed was carried out. A noticeable difference was found in the electrical conductivity and magnetic properties of such composites. There was a direct correlation between magnetization and concentrations of magnetic phases and magnetic particle sizes. The SEM images showed the formation of networks of magnetic particles distributed inside the matrix, and the distance between the particles ranges between 0.1–1 μm. It was found that there is a direct relationship between magnetization and the Curie point and the coercive forces. The sample with the lowest magnetization showed a sharp drop in the coercive force to 16 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Armitage, N.P., Mele, E.J., and Vishwanath, A., Rev. Mod. Phys., 2018, vol. 90, no. 1, p. 015001.

    Article  CAS  ADS  Google Scholar 

  2. Yan, M., Huang, H., Zhang, K., et al., Nat. Commun., 2017, vol. 8, p. 257.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  3. Li, Z., Henriksen, E.A., Jiang, Z., et al., Nat. Phys., 2008, vol. 4, no. 7, p. 532.

    Article  CAS  Google Scholar 

  4. Wang, Y., Ni, Z., Liu, Q., et al., Adv. Funct. Mater., 2015, vol. 25, no. 1, p. 68.

    Article  CAS  Google Scholar 

  5. Wang, Z., Zhou, X.F., Zhang, X., et al., Nano Lett., 2015, vol. 15, no. 9, p. 6182.

    Article  CAS  PubMed  ADS  Google Scholar 

  6. He, L., Jia, Y., Zhang, S., et al., npj Quantum Mater., 2016, vol. 1, no. 1, p. 16014.

  7. Wu, Y.F., Zhang, L., Li, C.Z., et al., Adv. Mater., 2018, vol. 30, no. 34, p. 1707547.

    Article  Google Scholar 

  8. Lazarev, V.B., Shevchenko, V.Ya., Greenberg, J.H., and Sobolev, V.V., Poluprovodnikovye soedineniya gruppy A II B V (Group AIIBV Semiconductor Compounds), Moscow: Nauka, 1978.

  9. Marenkin, S.F. and Trukhan, V.M., Fosfidy, arsenidy tsinka i kadmiya (Phosphides, Arsenides of Zinc and Cadmium), Minsk: Nats. Akad. Nauk Belarusi, 2010.

  10. Żdanowicz, L., Pocztowski, G., Wėclewicz, C., et al., Thin Solid Films, 1976, vol. 34, no. 1, p. 161.

    Article  ADS  Google Scholar 

  11. Kloc, K. and Zdanowicz, W., J. Cryst. Growth, 1984, vol. 66, no. 2, p. 451.

    Article  CAS  ADS  Google Scholar 

  12. Kochura, A.V., Zakhvalinskii, V.S., Htet, A.Z., et al., Inorg. Mater., 2019, vol. 55, no. 9, p. 879.

    Article  CAS  Google Scholar 

  13. Young, S.M., Zaheer, S., Teo, J.C., et al., Phys. Rev. Lett., 2012, vol. 108, no. 14, p. 140405.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Wang, Z., Weng, H., Wu, Q., et al., Phys. Rev. B, 2013, vol. 88, no. 12, p. 125427.

  15. Borisenko, S., Gibson, Q., Evtushinsky, D., et al., Phys. Rev. Lett., 2014, vol. 113, no. 2, p. 027603.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Liu, Z.K., Jiang, J., Zhou, B., et al., Nat. Mater., 2014, vol. 13, no. 7, p. 677.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Ali, M.N., Gibson, Q., Jeon, S., et al., Inorg. Chem., 2014, vol. 53, no. 8, p. 4062.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, Y.F., Zhang, L., Li, C.Z., et al., Adv. Mater., 2018, vol. 30, no. 34, p. 1707547.

    Article  Google Scholar 

  19. Mekhiya, A.B., Kazakov, A.A., Oveshnikov, L.N., et al., Semiconductors, 2019, vol. 53, no. 11, p. 1439.

    Article  CAS  ADS  Google Scholar 

  20. Liang, T., Gibson, Q., Ali, M.N., et al., Nat. Mater., 2015, vol. 14, no. 3, p. 280.

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Wang, Z., Weng, H., Wu, Q., et al., Phys. Rev. B, 2013, vol. 88, no. 12, p. 125427.

    Article  ADS  Google Scholar 

  22. Oveshnikov, L.N., Ril, A.I., Mekhiya, A.B., et al., Eur. Phys. J. Plus, 2022, vol. 137, no. 3, p. 374.

    Article  CAS  Google Scholar 

  23. Stephen, G.M., Hanbicki, A.T., Schumann, T., et al., ACS Nano, 2021, vol. 15, no. 3, p. 5459.

    Article  CAS  PubMed  Google Scholar 

  24. Guo, J., Zhao, X., Sun, N., et al., J. Mater. Sci. Technol., 2021, vol. 76, p. 247.

    Article  CAS  Google Scholar 

  25. Zhang, D., Jian, W., Yun, H., et al., Nat. Commun., 2023, vol. 14, no. 1, p. 4151.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. Luo, W., Du, M.H., Reboredo, F.A., et al., 2D Mater., 2023, vol. 10, no. 3, p. 035008.

  27. Trassin, M., J. Phys.: Condens. Matter, 2015, vol. 28, no. 3, p. 033001.

    PubMed  ADS  Google Scholar 

  28. Guo, Z., Yin, J., Bai, Y., et al., Proc. IEEE, 2021, vol. 109, no. 8, p. 1398.

    Article  CAS  Google Scholar 

  29. Boona, S.R., Myers, R.C., and Heremans, J.P., Energy Environ. Sci., 2014, vol. 7, no. 3, p. 885.

    Article  Google Scholar 

  30. Xu, G., Wang, J., Felser, C., et al., Nano Lett., 2015, vol. 15, no. 3, p. 2019.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Deng, H., Chen, Z., Wolos, A., et al., Nat. Phys., 2021, vol. 17, no. 1, p. 36.

    Article  CAS  Google Scholar 

  32. Sharma, A., Tulapurkar, A.A., and Muralidharan, B., J. Appl. Phys., 2021, vol. 129, no. 23, p. 233901.

    Article  CAS  ADS  Google Scholar 

  33. Zhang, F., Taake, C., Huang, B., et al., Acta Mater., 2022, vol. 224, p. 117532.

    Article  CAS  Google Scholar 

  34. Nascimento, F.C., Santos, A.O., Campos, A.D., et al., Mater. Res., 2006, vol. 9, p. 111.

    Article  CAS  Google Scholar 

  35. Engel-Herbert, R., Hesjedal, T., Mohanty, J., et al., Phys. Rev. B, 2006, vol. 73, no. 10, p. 104441.

    Article  ADS  Google Scholar 

  36. Akinaga, H., Miyanishi, S., Tanaka, K., et al., Appl. Phys. Lett., 2000, vol. 76, no. 1, p. 97.

    Article  CAS  ADS  Google Scholar 

  37. Fischer, G. and Pearson, W.B., Can. J. Phys., 1958, vol. 36, no. 8, p. 1010.

    Article  CAS  ADS  Google Scholar 

  38. Marenkin, S.F., Kochura, A.V., Izotov, A.D., et al., Russ. J. Inorg. Chem., 2018, vol. 63, p. 1753.

    Article  CAS  Google Scholar 

  39. De, A., Mondal, N., and Samanta, A., Nanoscale, 2017, vol. 9, no. 43, p. 16722.

    Article  CAS  PubMed  Google Scholar 

  40. Ramade, J., Andriambariarijaona, L.M., Steinmetz, V., et al., Nanoscale, 2018, vol. 10, no. 14, p. 6393.

    Article  CAS  PubMed  Google Scholar 

  41. Sasaki, R., Miura, D., and Sakuma, A., Appl. Phys. Express, 2015, vol. 8, no. 4, p. 043004.

    Article  ADS  Google Scholar 

  42. Sarkar, A., Dey, S., and Rajaraman, G., Chem.—Eur. J., 2020, vol. 26, no. 62, p. 14036.

    Article  CAS  PubMed  Google Scholar 

  43. Meinert, M., J. Phys.: Condens. Matter, 2016, vol. 28, no. 5, p. 056006.

    PubMed  ADS  Google Scholar 

  44. Carva, K., Baláž, P., Šebesta, J., et al., Phys. Rev. B, 2020, vol. 26, no. 5, p. 054428.

    Article  ADS  Google Scholar 

  45. Agarwal, M. and Mishchenko, E.G., Phys. Rev. B, 2017, vol. 95, no. 7, p. 075411.

    Article  ADS  Google Scholar 

  46. Saypulaeva, L.A., Gadzhialiev, M.M., Alibekov, A.G., et al., Inorg. Mater., 2019, vol. 55, no. 9, p. 873.

    Article  CAS  Google Scholar 

  47. Ril, A.I. and Marenkin, S.F., Russ. J. Inorg. Chem., 2016, vol. 66, no. 10, p. 2005.

    Article  Google Scholar 

  48. Morchenko, A.T., Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 11, p. 1209.

    Article  CAS  Google Scholar 

  49. Nikolaev, V.I. and Shipilin, A.M., Phys. Solid State, 2003, vol. 45, no. 6, p. 1079.

    Article  CAS  ADS  Google Scholar 

  50. White, R.M., Quantum Theory of Magnetism: Magnetic Properties of Materials, New York: Springer, 2007.

    Book  Google Scholar 

  51. Magnetism. I. Fundamentals, Lacheisserie, E.T., Gignoux, D., and Schlenker, M., Eds., Boston: Kluwer, 2002.

    Google Scholar 

  52. Desrat, W., Krishtopenko, S.S., Piot, B.A., et al., Phys. Rev. B, 2018, vol. 97, no. 24, p. 245203.

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The work was partially supported by the Russian Science Foundation (grant no. 21-73-20220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Morchenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Onaizan, M.H., Ril’, A.I., Semin, A.N. et al. Features of Electrical and Magnetic Properties and Curie Point Behavior in Nanocomposites Based on Cd3As2 and MnAs. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S122–S132 (2023). https://doi.org/10.3103/S1062873823704506

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873823704506

Keywords:

Navigation