Skip to main content
Log in

Graphene Nanotapes Modified with Impurity Boron Atoms as a Basis for Two-Dimensional Photonic Crystals

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

An analysis is performed of the band structure of graphene nanotapes doped with boron impurities and the possibility of using them to form two-dimensional photonic crystals. It is established that a change in the band gap of graphene nanotapes over a wide range of values alters their conductivity and thus their refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ivchenko, E. and Pikus, G.E., Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid State Sciences, vol. 110, New York: Springer, 1997.

  2. de Sterke, C.M., Salinas, D.G., and Sipe, J.E., Phys. Rev. E, 1996, vol. 64, p. 1969.

    Article  ADS  Google Scholar 

  3. Mitin, V.V., Kochelap, V.A., and Stroscio, M.A., Quantum Heterostructures: Microelectronics and Optoelectronics, Cambridge: Cambridge Univ. Press, 1999.

    Google Scholar 

  4. Kivshar, Yu.S. and Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals, New York: Academic, 2003.

    Google Scholar 

  5. Zaporotskova, I.V., Boroznina, N.P., Boroznin, S.V., et al., Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. 6, p. 673.

    Article  Google Scholar 

  6. Harris, P., Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century, Cambridge: Cambridge Univ. Press, 2001.

    Google Scholar 

  7. D’yachkov, P.N., Uglerodnye nanotrubki. Stroenie, svoistva, primeneniya (Carbon Nanotubes: Structure, Properties, Applications), Moscow: Binom. Laboratoriya znanii, 2006.

  8. Sawant, S.V., Patwardhan, A.W., Joshi, J.B., and Dasgupta, K., Chem. Eng. J., 2022, vol. 427, 131616.

    Article  Google Scholar 

  9. Thirumal, V., Pandurangan, A., Jayavel, R., and Ilangovan, R., Synth. Met., 2016, vol. 220, p. 524.

    Article  Google Scholar 

  10. Landau, L.D and Lifshits, E.M., Elektrodinamika tverdykh sred (Electrodynamics of Solid Media), Moscow: Fizmatlit, 1988.

    Google Scholar 

  11. Boroznin, S.V., Zaporotskova, I.V., and Boroznina, N.P., J. Nano- Electron. Phys., 2017, vol. 9, no. 2, p. 02034.

    Google Scholar 

  12. Boroznina, E.V., Zhiganova, T.A., and Boroznin, S.V., J. Phys.: Conf. Ser., 2015, vol. 586, 012010.

    Google Scholar 

  13. Zaporotskova, I., Boroznin, S., and Boroznina, N., J. Phys.: Conf. Ser., 2021, vol. 1967, 012045.

  14. Boroznina, N., Zaporotskova, I., Boroznin, S., and Dryuchkov, E., Chemosensors, 2019, vol. 7, no. 1, p. 11.

    Article  Google Scholar 

  15. Koch, W. and Holthausen, M., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley, 2002.

    Google Scholar 

  16. Kohn, W. and Pople, J.A., Quantum Chemical Models, Nobel Lecture, 1998.

    Google Scholar 

  17. Sawant, S.V., Banerjee, S., Patwardhan, A.W., et al., Int. J. Hydrogen Energy, 2019, vol. 44, no. 33, p. 18193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Boroznin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaporotskova, I.V., Boroznin, S.V., Belonenko, M.B. et al. Graphene Nanotapes Modified with Impurity Boron Atoms as a Basis for Two-Dimensional Photonic Crystals. Bull. Russ. Acad. Sci. Phys. 86, 1450–1453 (2022). https://doi.org/10.3103/S1062873822120292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822120292

Navigation