Skip to main content
Log in

Carbon Nanotubes Doped with Boron as a Basis for Two-Dimensional Photonic Crystals

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Calculations of the band structure of carbon nanotubes doped with boron are used to propose a way of creating of two-dimensional photonic crystals based on them. The ability to change the width of the band gap over a wide range of values alters the conductivity of the nanotubes and thus their refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Pilus, G. and Ivchenko, E., Springer Ser. Solid-State Sci., 1997, vol. 110, p. 372.

    Google Scholar 

  2. de Sterke, C.M., Salinas, D.G., and Sipe, J.E., Phys. Rev. E, 1996, vol. 64, p. 1969.

    Article  ADS  Google Scholar 

  3. Mitin, V.V., Kochelap, V.A., and Stroscio, M.A., Quantum Heterostructures: Microelectronics and Optoelectronics, Cambridge: Cambridge Univ. Press, 1999.

    Google Scholar 

  4. Kivshar, Yu.S. and Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals, New York: Academic, 2003.

    Google Scholar 

  5. Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: Cambridge Univ. Press, 1999.

    Book  Google Scholar 

  6. D’yachkov, P.N., Uglerodnye nanotrubki. Stroenie, svoistva, primeneniya (Carbon Nanotubes: Structure, Properties, Applications), Moscow: Binom. Laboratoriya Znanii, 2006.

  7. Sawant, S.V., Patwardhan, A.W., Joshi, J.B., and Dasgupta, K., Chem. Eng. J., 2022, vol. 427, 131616.

    Article  Google Scholar 

  8. Fujisawa, K., Hayashi, T., Endo, M., et al., Nanoscale, 2018, vol. 10, no. 26, p. 12723.

    Article  Google Scholar 

  9. Sawant, S.V., Banerjee, S., Patwardhan, A.W., et al., Int. J. Hydrogen Energy, 2019, vol. 44, no. 33, p. 18193.

    Article  Google Scholar 

  10. Zhou, Q., Wu, J., Pan, Z., et al., Int. J. Hydrogen Energy, 2020, vol. 45, no. 58, p. 33634.

    Article  Google Scholar 

  11. Yeh, M.-H., Leu, Y.-A., Chiang, W.-H., et al., J. Power Sources, 2018, no. 375, p. 29.

  12. Muramatsu, H., Kang, C.-S., and Fujisawa, K., ACS Appl. Nano Mater., 2020, vol. 3, no. 4, p. 3347.

    Article  Google Scholar 

  13. Chaudhuri, P., Lima, C.N., Frota, H.O., and Chaudhuri, A.P., Appl. Surf. Sci., 2019, no. 490, p. 242.

  14. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatlit, 1988.

  15. Koch, W. and Holthausen, M., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley, 2002.

    Google Scholar 

  16. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals, Rev. Mod. Phys., 1999, vol. 71, p. 1253; Pople, J.A., Nobel Lecture: Quantum chemical models, Rev. Mod. Phys., 1999, vol. 71, p. 1267.

    Article  ADS  Google Scholar 

  17. Zaporotskova, I., Boroznin, S., and Boroznina, N., J. Phys.: Conf. Ser., 2021, vol. 1967, no. 1, 012045.

    Google Scholar 

  18. Boroznina, N., Zaporotskova, I., Boroznin, S., and Dryuchkov, E., Chemosensors, 2019, vol. 7, no. 1, p. 11.

    Article  Google Scholar 

Download references

Funding

This work was supported of the RF Presidential Grant Council, project nos. SP-798.2019.1 and MK-1758.2020.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zaporotskova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaporotskova, I.V., Boroznina, N.P., Boroznin, S.V. et al. Carbon Nanotubes Doped with Boron as a Basis for Two-Dimensional Photonic Crystals. Bull. Russ. Acad. Sci. Phys. 86, 673–677 (2022). https://doi.org/10.3103/S1062873822060314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822060314

Navigation