Skip to main content
Log in

Experimental and Simulation Results of the Self-Absorption Correction Factors of Some Chemical Fertilizers in the Energy Range from 80 to 1332 keV

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The purpose of this study is to calculate self-absorption correction factors of some chemical fertilizers used in Antalya in Turkey. Eight different types of chemical fertilizers with densities varying from 1.043 to 1.485 g cm–3 were investigated by Monte Carlo simulations and experimentally using the Transmission Method. Self-absorption correction factors of some chemical fertilizers were calculated experimentally using point sources which are 133Ba, 137Cs, 22Na and 60Co in the energy range from 80 to 1332 keV. The point source emissions were counted for 1000 seconds using a high purity germanium (HPGe) detector. Spectra were analyzed using computer software. Self-absorption correction factors versus energy graphics were obtained and compared with those of air and ultrapure water. The self-absorption correction factor versus energy graphics were obtained and fitted. Experimental and simulation results of the self-absorption correction factors of some chemical fertilizers were obtained and compared in the energy range from 80 to 1332 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Frost, M.D., Cole, J.C., and Dole, J.M., J. Plant Nutr., 1991, vol. 26, no. 2, p. 315.

    Article  Google Scholar 

  2. Han, S.H., An, J.Y., Hwang, J., Kim, S.B., and Park, B.B., For.Sci. Technol., 2016, vol. 12, no. 3, p. 137.

    Google Scholar 

  3. Scherer, H.W., Mengel, K., Dittmar, H., Drach, M., Vosskamp, R., Trenkel, M.E., Gutser, R., Steffens, G., Czikkely, V., Niedermaier, T., Hähndel, R., Prün, H., Ullrich, K.H., Mühlfeld, H., Werner, W., Kluge, G., Kulmann, F., Steinhauser, H., Brändlein, W., and Kummer, K.F., Fertilizers, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, 2007.

    Google Scholar 

  4. Lambert, R., Grant, C., and Sauve, S., Sci. Total Environ., 2007, vol. 378, p. 293.

    Article  ADS  Google Scholar 

  5. El-Taher, A. and Althoyaib, S.S., Appl. Radiat. Isot., 2012, vol. 70, p. 290.

    Article  Google Scholar 

  6. El-Taher, A. and Makhluf, S., Indian J. Pure Appl. Phys., 2010, vol. 48, p. 697.

    Google Scholar 

  7. El-Bahi, S.M., Sroor, A., Mohamed, G.Y., and El-Gendy, N.S., Appl. Radiat. Isot., 2017, vol. 123, p. 121.

    Article  Google Scholar 

  8. Lopes, J.M., Medeiros, M.P.C., Garcês, R.W.D., Filgueiras, R.A., Thalhofer, J.L., Silva Júnior, W.F.R., and Silva, A.X., Appl. Radiat. Isot., 2018, vol. 141, p. 241.

    Article  Google Scholar 

  9. Kaminski, S., Jakobi, A., and Wilhelm, C., Appl. Radiat. Isot., 2014, vol. 94, p. 306.

    Article  Google Scholar 

  10. Bouisset, P., Lefèvre, O., Cagnat, X., Kerlau, G., Ugron, A., and Calmet, D., Nucl. Instrum. Methods Phys. Res.,Sect. A, 1999, vol. 437, p. 114.

    Google Scholar 

  11. Khater, A.E.M. and Ebaid, Y.Y., Appl. Radiat. Isot., 2008, vol. 66, p. 407.

    Article  Google Scholar 

  12. Barros, L.F. and Pecequilo, B.R.S., Radiat. Phys. Chem., 2014, vol. 95, p. 339.

    Article  ADS  Google Scholar 

  13. Bonczyk, M., Radiat. Phys. Chem., 2018, vol. 148, p. 1.

    Article  ADS  Google Scholar 

  14. Pilleyre, T., Sanzelle, S., Miallier, D., Fain, D., and Courtine, F., Radiat. Meas., 2006, vol. 41, p. 323.

    Article  Google Scholar 

  15. Barrera, M., Suarez-Llorens, A., Casas-Ruiz, M., Alonso, J.J., and Vidal, J., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2017, vol. 854, p. 31.

    Google Scholar 

  16. Zi-Ning, T., Xiao-Ping, O., Yang, L., Liang, C., Jin-Liang, L., Xian-Peng, Z., Ji-Wen, S., and Ming, Z., Chin. Phys. C, 2014, vol. 38, no. 7, 076002.

    Article  ADS  Google Scholar 

  17. Šoštarić, M., Babić, D., Petrinec, B., and Zgorelec, Ž., Appl. Radiat. Isot., 2016, vol. 113, p. 110.

    Article  Google Scholar 

  18. Cutshall, N.H., Larsen, I.L., and Olsen, C.R., Nucl. Instrum. Methods Phys. Res., 1983, vol. 206, nos. 1–2, p. 309.

    Article  ADS  Google Scholar 

  19. Larsen, I.L. and Lee, S.Y., J. Radioanal. Chem., 1983, vol. 79, no. 1, p. 165.

    Article  Google Scholar 

  20. Kitto, M.E., Appl. Radiat. Isot., 1991, vol. 42, no. 9, p. 835.

    Article  Google Scholar 

  21. Sato, T., Mori, K., and Kato, T., Anal. Sci., 1991, vol. 7, p. 217.

    Article  Google Scholar 

  22. Misiak, R., Hajduk, R., Stonbinski, M., Bartyzel, M., Szarlowicz, K., and Kubica, B., Nukleonika, 2011, vol. 56, no. 1, p. 23.

    Google Scholar 

  23. Dlugosz-Lisiecka, M. and Ziomek, M., J. Environ. Radioact., 2015, vol. 150, p. 44.

    Article  Google Scholar 

  24. Manduci, L., Tenailleau, L., Trolet, J.L., De Vismes, A., Lopez, G., and Piccione, M., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2010, vol. 613, p. 90.

    Google Scholar 

  25. Eke, C. and Boztosun, I., Kerntechnik, 2015, vol. 80, no. 3, p. 280.

    Article  Google Scholar 

  26. Maestro-32, 2019. www.ortec-online.com/products/ application-software/maestro-mca. Accessed April 10, 2019.

  27. Gamma-W, 2019. http://www.westmeier.com. Accessed April 10, 2019.

  28. X-Ray and Gamma-Ray Standards for Detector Calibration, IAEA-TECDOC no. 619, Vienna: Int. At. Energy Agency, 1991.

  29. Allison, J., Amako, K., Apostolakis, J., et al., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2016, vol. 835, p. 186.

    Google Scholar 

  30. Allison, J., Amako, K., Apostolakis, J., et al., IEEE Trans. Nucl. Sci., 2006, vol. 53, p. 270.

    Article  ADS  Google Scholar 

  31. Agostinelli, S., Allison, J., Amako, K., et al., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2003, vol. 506, p. 250.

    Google Scholar 

  32. Eke, C. and Boztosun, I., J. Radioanal. Nucl. Chem., 2014, vol. 301, p. 103.

    Article  Google Scholar 

  33. Stull, R., Practical Meteorology: An Algebra-Based Survey of Atmospheric Science, Vancouver: Univ. British Columbia, 2015.

    Google Scholar 

  34. Lide, D.R., CRC Handbook of Chemistry and Physics, Boca Raton: CRC, 2005.

    Google Scholar 

  35. Gilmore, G.R., Practical Gamma-Ray Spectroscopy, Warrington: Wiley, 2008, 2nd ed.

    Book  Google Scholar 

  36. Degrelle, D., Mavon, C., and Groetz, J.-E., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2016, vol. 816, p. 47.

    Google Scholar 

  37. Sarmiento, L.G., Andersson, L.-L., and Rudolph, D., Nucl. Instrum. Methods Phys. Res.,Sect. A, 2012, vol. 667, p. 26.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Canel Eke gratefully acknowledges the support of the Scientific and Technological Research Council of Turkey (TUBITAK) for the 2224-A-International Scientific Meetings Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Eke.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eke, C., Yildirim, A. Experimental and Simulation Results of the Self-Absorption Correction Factors of Some Chemical Fertilizers in the Energy Range from 80 to 1332 keV. Bull. Russ. Acad. Sci. Phys. 84, 1012–1021 (2020). https://doi.org/10.3103/S1062873820080122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873820080122

Navigation