Skip to main content
Log in

Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we attempt to determine the self-attenuation correction factor for 37 different sand samples collected from Antalya region of Turkey with densities changing from 2.205 to 2.679 g \(\hbox {cm}^{-3}.\)Transmission method has been used in order to obtain self-attenuation correction factor in comparison with the air and ultrapure water samples for each case. Self-attenuation correction factor versus energy fit curve is obtained. While the self-attenuation correction factor has large values at low energies, it becomes smaller at high energies and tends to become constant thereafter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boshkova T, Minev L (2001) Corrections for self-attenuation in gamma-ray spectrometry of bulk samples. Appl Radiat Isot 54:777–783

    Article  CAS  Google Scholar 

  2. Misiak R, Hajduk R, Stobiñski M, Bartyzel M, Szarlowicz K, Kubica B (2011) Self-absorption correction and efficiency calibration for radioactivity measurement of environmental samples by gamma-ray spectrometry. Nukleonika 56(1):23–28

    CAS  Google Scholar 

  3. Robu E, Giovani C (2009) Gamma-ray self-attenuation corrections in environmental samples. Rom Rep Phys 61(2):295–300

    Google Scholar 

  4. Omar M, Laili Z (2005) Effects of sample density in the determination of radionuclides by gamma spectrometry. J Nucl Relat Technol 2(2):15–22

    Google Scholar 

  5. Barros LF, Pecequilo BRS (2014) Self-attenuation factors in gamma-ray spectrometry of select sand samples from Camburi Beach, Vitoria, Espirito Santo, Brazil. Radiat Phys Chem 95:339–341

    Article  CAS  Google Scholar 

  6. Khater AEM, Ebaid YY (2008) A simplified gamma-ray self attenuation correction in bulk samples. Appl Radiat Isot 66:407–413

    Article  CAS  Google Scholar 

  7. Hussain N, Kim G, Church TM, Carey W (1996) A simplified technique gamma-spectrometric analysis sediment samples for of \(^{210}\)Pb in sediment samples. Appl Radiat Isot 47(4):473–477

    Article  CAS  Google Scholar 

  8. Ramos-Lerate I, Barrera M, Ligero RA, Casas-Ruiz M (1998) A new method for gamma-efficiency calibration of voluminal samples in cylindrical geometry. J Environ Radioact 38(1):47–57

    Article  CAS  Google Scholar 

  9. Alfassi ZB, Lavi N (2005) The dependence of the counting efficiency of marinelli beakers for environmental samples on the density of the samples. Appl Radiat Isot 63:87–92

    Article  CAS  Google Scholar 

  10. Mostajaboddavati M, Hassanzadeh S, Faghihian H, Abdi MR, Kamali M (2006) Efficiency calibration and measurement of self-absorption correction for environmental gamma-spectroscopy of soil samples using marinelli beaker. J Radioanal Nucl Chem 268(3):539–544

    Article  CAS  Google Scholar 

  11. Quindós LS, Sainz C, Fuente I, Nicolás J, Quindós L, Arteche J (2006) Correction by self-attenuation in gamma-ray spectrometry for environmental samples. J Radioanal Nucl Chem 270(2):339–343

    Article  Google Scholar 

  12. Ferreira AO, Pecequilo BRS (2011) A study of self-attenuation correction for geological measures of Paraná State granites with high resolution gamma-ray spectrometry. In: Proceedings of the 2011 International Nuclear Atlantic Conference—INAC 2011, Brazil, 24–28 October

  13. Hasan M, Bodizs D, Czifrus SZ (2002) A simplified technique to determine the self-absorption correction for sediment samples. Appl Radiat Isot 57:915–918

    Article  CAS  Google Scholar 

  14. Agarwal C, Poi S, Mhatre A, Goswami A, Gathibandhe M (2009) Attenuation correction factors for cylindrical, disc and box geometry. Nucl Instrum Methods Phys Res A 607:439–445

    Article  CAS  Google Scholar 

  15. Haddad K, Albyiat R (2009) Correction factors determination in large samples gamma assay using its own multi-gamma lines spectrum. Appl Radiat Isot 67:1819–1823

    Article  CAS  Google Scholar 

  16. Haddad K, Albyiat R (2012) Volume efficiency correction factor determination for gamma spectrometry using \(^{82}\)Br. J Radioanal Nucl Chem 292:29–32

    Article  CAS  Google Scholar 

  17. Badawi MS, Gouda MM, Nafee SS, El-Khatib AM, El-Mallah EA (2012) New analytical approach to calibrate the co-axial hpge detectors including correction for source matrix self-attenuation. Appl Radiat Isot 70:2661–2668

    Article  CAS  Google Scholar 

  18. Abbas MI, Selim YS, Bassiouni M (2001) Hpge detector photopeak efficiency calculation including self-absorption and coincidence corrections for cylindrical sources using compact analytical expressions. Radiat Phys Chem 61:429–431

    Article  CAS  Google Scholar 

  19. El-Sayed AA (2007) Evaluation of Compton scattering and self-attenuation coefficient after \({\gamma }\)-ray analysis of naturally occurring radioactive elements in environmental samples. J Radioanal Nucl Chem 274(2):379–387

    Article  CAS  Google Scholar 

  20. Bolivar JP, Garcia -Leon IM, Garcia-Tenorio R (1997) On self-attenuation corrections in gamma-ray spectrometry. Appl Radiat Isot 48(8):1125–1126

    Article  CAS  Google Scholar 

  21. Al-Masri MS, Hasan M, Al-Hamwi A, Amin Y, Doubal AW (2013) Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV. J Environ Radioact 116:28–33

    Article  CAS  Google Scholar 

  22. Haddad KH, Suman H (2006) Determination of the gamma self-attenuation correction factors using intensity ratios. J Radioanal Nucl Chem 268(1):109–112

    Article  CAS  Google Scholar 

  23. Hernandez F, El-Daoushy F (2002) Semi-empirical method for self-absorption correction of photons with energies as low as 10 keV in environmental samples. Nucl Instrum Methods Phys Res A 484:625–641

    Article  CAS  Google Scholar 

  24. Saegusaa J, Kawasakia K, Mihara A, Ito M, Yoshida M (2004) Determination of detection efficiency curves of hpge detectors on radioactivity measurement of volume samples. Appl Radiat Isot 61:1383–1390

    Article  Google Scholar 

  25. Hong Loan TT, Phuong DN, Phong DPH, Khanh TA (2009) Investigating the effect of matrices and densities on the efficiency of hpge gamma spectroscopy using mcnp. Commun Phys 19(1):45–52

    Google Scholar 

  26. Isakar K, Realo K, Kiisk M, Realo E (2007) Efficiency corrections in low-energy gamma spectrometry. Nucl Instrum Methods Phys Res A 580:90–93

    Article  CAS  Google Scholar 

  27. Gonzalez JC, Diaz NC, Vargas MJ, Ferrera EC (2010) The effect of source chemical composition on the self-attenuation corrections for low-energy gamma-rays in soil samples. Appl Radiat Isot 68:360–363

    Article  Google Scholar 

  28. Hurtado S, Villa M, Manjon G, Garcia-Tenorio R (2007) A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4. Nucl Instrum Methods Phys Res A 580:234–237

    Article  CAS  Google Scholar 

  29. Patra S, Agarwal C, Gathibandhe M, Goswami A (2013) Attenuation correction for the assay of uranium(VI) solutions in large cylindrical containers by gamma ray spectrometry. Appl Radiat Isot 77:174–179

    Article  CAS  Google Scholar 

  30. Pilleyre T, Sanzelle S, Miallier D, Fain J, Courtine F (2006) Theoretical and experimental estimation of self-attenuation corrections in determination of 210Pb by \({\gamma }\)-spectrometry with well Ge detector. Radiat Meas 41:323–329

    Article  CAS  Google Scholar 

  31. Huy NQ, Binh DQ, An VX, Loan TTH, Can NT (2013) Self-absorption correction in determining the \(^{238}\)U activity of soil samples via 63.3 keV gamma ray using MCNP5 code. Appl Radiat Isot 71:11–20

    Article  CAS  Google Scholar 

  32. Sima O, Dovlete C (1997) Matrix effects in the activity measurement of environmental samples-implementation of specific corrections in a gamma-ray spectrometry analysis program. Appl Radiat Isot 48(1):59–69

    Article  CAS  Google Scholar 

  33. Vargas MJ, Timon AF, Diaz NC, Sanchez DP (2002) Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry. Appl Radiat Isot 57:893–898

    Article  Google Scholar 

  34. Dlugosz-Lisiecka M, Bem H (2013) Fast procedure for self-absorption correction for low \({\gamma }\) energy radionuclide \(^{210}\)Pb determination in solid environmental samples. J Radioanal Nucl Chem 298:495–499

    Article  CAS  Google Scholar 

  35. Cutshall NH, Larsen IL, Olsen CR (1983) Direct analysis of \(^{210}\)Pb in sediment samples: self absorbtion corrections. Nucl Instrum Meth 206:309–312

    Article  CAS  Google Scholar 

  36. IAEA-TECDOC-619.1991. X-ray and gamma-ray standarts for detector calibration

  37. Maestro-32 (2008) Multi-channel analyser software, A65–B32 model. Ortec

Download references

Acknowledgments

We would like to thank Cemil EKE and Şükriye EKE for supports and their help to collect sand samples, Professor Juan Pedro BOLIVAR for sending us some useful articles about self-attenuation correction factor, Tanfer CANER for his useful suggestion, Dr. Edip BAYRAM for help to dry sand samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canel Eke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eke, C., Boztosun, I. Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey. J Radioanal Nucl Chem 301, 103–108 (2014). https://doi.org/10.1007/s10967-014-3145-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3145-7

Keywords

Navigation