Skip to main content
Log in

Terahertz Gyrotrons at High Cyclotron Harmonics with Irregular Electrodynamic Systems

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Two experimental gyrotron test benches in the terahertz frequency range with large-orbit electron beams operating at high harmonics of the cyclotron frequency are created at the Russian Academy of Sciences’ Institute of Applied Physics. An overview is presented of work aimed at developing advanced irregular microwave systems for these gyrotrons. The aim of this work is to reduce ohmic losses and improve the selectivity of operating wave excitation at high harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Idehara, T., Tsuchiy, H., Watanabe, O., et al., Int. J. Infrared Millimeter Waves, 2006, vol. 27, p. 319.

    Article  ADS  Google Scholar 

  2. Hornstein, M.K., Bajaj, V.S., Griffin, R.G., and Temkin, R.J., IEEE Trans. Plasma Sci., 2006, vol. 34, p. 524.

    Article  ADS  Google Scholar 

  3. Glyavin, M.Y., Luchinin, A.G., and Golubiatnikov, G.Y., Phys. Rev. Lett., 2008, vol. 100, p. 015101.

    Article  ADS  Google Scholar 

  4. Bratman, V.L., Fedotov, A.E., Kalynov, Y.K., et al., J. Infrared, Millimeter, Terahertz Waves, 2011, vol. 32, p. 371.

    Article  Google Scholar 

  5. Torrezan, A.C., Shapiro, M.A., Sirigiri, J.R., et al., IEEE Trans. Electron Devices, 2011, vol. 58, p. 2777.

    Article  ADS  Google Scholar 

  6. Idehara, T. and Sabchevski, S.P., J. Infrared, Millimeter, Terahertz Waves, 2012, vol. 33, p. 667.

    Article  Google Scholar 

  7. Glyavin, M.Y., Luchinin, A.G., Nusinovich, G.S., et al., Appl. Phys. Lett., 2012, vol. 101, p. 153 503.

    Article  Google Scholar 

  8. Alberti, S., Ansermet, J.-Ph., Avramides, K.A., et al., Phys. Plasmas, 2012, vol. 19, p. 123 102.

    Article  Google Scholar 

  9. Idehara, T. and Sabchevski, S.P., J. Infrared, Millimeter, Terahertz Waves, 2012, vol. 33, p. 667.

    Article  Google Scholar 

  10. Bratman, V.L., Kalynov, Y.K., and Manuilov, V.N., Phys. Rev. Lett., 2009, vol. 102, p. 245 101.

    Article  Google Scholar 

  11. Bandurkin, I.V., Kalynov, Yu.K., and Savilov, A.V., IEEE Trans. Electron Devices, 2015, vol. 62, p. 2356.

    Article  ADS  Google Scholar 

  12. Bandurkin, I.V., Bratman, V.L., Kalynov, Yu.K., et al., IEEE Trans. Electron Devices, 2018, vol. 65, p. 2287.

    Article  ADS  Google Scholar 

  13. Jory, H.R., Research and Development Technical Report ECOM-01873-F, Palo Alto: Varian Associates, 1968.

  14. McDermott, D.B., Luhmann, N.C., Kupiszewski, A., and Jory, H.R., Phys. Fluids, 1983, vol. 26, p. 1936.

    Article  ADS  Google Scholar 

  15. Lawson, W., Destler, W.W., and Striffler, C.D., IEEE Trans. Plasma Sci., 1985, vol. 13, p. 444.

    Article  ADS  Google Scholar 

  16. Bratman, V.L., Fedotov, A.E., Kalynov, Y.K., et al., IEEE Trans. Plasma Sci., 1999, vol. 27, p. 456.

    Article  ADS  Google Scholar 

  17. Savilov, A.V., Bratman, V.L., Phelps, A.D.R., and Samsonov, S.V., Phys. Rev. E, 2000, vol. 62, p. 4207.

    Article  ADS  Google Scholar 

  18. Bratman, V.L., Fedotov, A.E., Kolganov, N.G., et al., Phys. Rev. Lett., 2000, vol. 85, p. 3424.

    Article  ADS  Google Scholar 

  19. Bratman, V.L., Kalynov, Yu.K., Manuilov, V.N., and Samsonov, S.V., Radiophys. Quantum Electron., 2005, vol. 48, p. 731.

    Article  ADS  Google Scholar 

  20. Kalynov, Yu.K. and Manuilov, V.N., IEEE Trans. Electron Devices, 2016, vol. 63, p. 491.

    Article  ADS  Google Scholar 

  21. Bandurkin, I.V., Kalynov, Y.K., Osharin, I.V., and Savilov, A.V., Phys. Plasmas, 2016, vol. 23, p. 013113.

    Article  ADS  Google Scholar 

  22. Bandurkin, I.V., Kalynov, Y.K., Makhalov, P.B., et al., IEEE Trans. Electron Devices, 2017, vol. 64, p. 300.

    Article  ADS  Google Scholar 

  23. Bandurkin, I.V., Kalynov, Y.K., and Savilov, A.V., Phys. Plasmas, 2010, vol. 17, p. 073101.

    Article  ADS  Google Scholar 

  24. Kalynov, Y.K., Osharin, I.V., and Savilov, A.V., Phys. Plasmas, 2016, vol. 23, p. 053116.

    Article  ADS  Google Scholar 

  25. Bandurkin, I.V., Glyavin, M.Y., Kuzikov, S.V., et al., IEEE Trans. Electron Devices, 2017, vol. 64, p. 3893.

    Article  ADS  Google Scholar 

  26. Oparina, Yu.S. and Savilov, A.V., J. Infrared, Millimeter, Terahertz Waves, 2018, vol. 39, p. 595.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-19-01605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savilov.

Additional information

Translated by G. Dedkov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurkin, I.V., Bratman, V.L., Kalynov, Y.K. et al. Terahertz Gyrotrons at High Cyclotron Harmonics with Irregular Electrodynamic Systems. Bull. Russ. Acad. Sci. Phys. 82, 1582–1586 (2018). https://doi.org/10.3103/S1062873818120250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873818120250

Navigation