Skip to main content
Log in

Catalyst Based on Mesoporous Silica Gel Doped with Terbium and Modified with Nickel Obtained by High-Temperature Template Method for Aromatic Hydrocarbons Hydrogenation

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The catalytic properties of materials based on terbium-doped and nickel-modified mesoporous silica gels prepared by the high-temperature template method were studied. The surface morphology and textural characteristics of the obtained samples were studied by scanning electron microscopy, X-ray phase analysis, and inductively coupled plasma mass spectrometry. The catalytic activity of the obtained catalysts was studied in the hydrogenation reaction of benzene, m-, p-, and o-xylene in the temperature range of 80–170°C and at a hydrogen pressure of 3 atm. It was established that doping with terbium leads to an increase in the catalytic activity of the catalyst modified with nickel in the hydrogenation reaction of benzene derivatives. Therefore, it was shown that mesoporous silica gel doped with terbium and modified with nickel is an effective catalyst for the hydrogenation of benzene and xylenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zhang, J., Ma, Y., Shi, F., Liu, L., and Deng, Y., Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol–gel method, Micropor. Mesopor. Mater., 2009, vol. 119, nos. 1–3, pp. 97–103. https://doi.org/10.1016/j.micromeso.2008.10.003

    Article  CAS  Google Scholar 

  2. Wu, S.H., Mou, C.Y., and Lin, H.P., Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev., 2013, vol. 42, no. 9, pp. 3862–3875. https://doi.org/10.1039/C3CS35405A

    Article  CAS  PubMed  Google Scholar 

  3. Rahman, N.A., Widhiana, I., Juliastuti, S.R., and Setyawan, H., Synthesis of mesoporous silica with controlled pore structure from bagasse ash as a silica source, Colloids Surf. A Physicochem. Eng. Asp., 2015, vol. 476, pp. 1–7. https://doi.org/10.1016/j.colsurfa.2015.03.018

    Article  CAS  Google Scholar 

  4. Li, B., Shu, D., Wang, R., Zhai, L., Chai, Y., Lan, Y., Cao, H., and Zou, C., Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage, Renew. Energy, 2020, vol. 145, pp. 84–92. https://doi.org/10.1016/j.renene.2019.05.118

    Article  CAS  Google Scholar 

  5. Kaur, A., Bajaj, B., Kaushik, A., Saini, A., and Sud, D., A review on template assisted synthesis of multi-functional metal oxide nanostructures: Status and prospects, Mater. Sci. Eng. B, 2022, vol. 286, p. 116005. https://doi.org/10.1016/j.mseb.2022.116005

    Article  CAS  Google Scholar 

  6. Yu, X. and Williams, C.T., Recent advances in the applications of mesoporous silica in heterogeneous catalysis, Catal. Sci. Technol., 2022, vol. 1219, pp. 5765–5794. https://doi.org/10.1039/D2CY00001F

    Article  Google Scholar 

  7. Yi, C., Zhang, L., Xiang, G., and Liu, Z., Size effect of Co–N–C-functionalized mesoporous silica hollow nanoreactors on the catalytic performance for the selective oxidation of ethylbenzene, New J. Chem., 2022, vol. 46, no. 31, pp. 15102–15109. https://doi.org/10.1039/D2NJ01705A

    Article  CAS  Google Scholar 

  8. Uruş, S., Microwave assisted catalytic oxidation of cyclohexene, cyclohexane, cyclooctane and styrene with metal complexes of bis (azo-imine) ligands supported on mesoporous silica, Phosphorus Sulfur Silicon Relat. Elem., 2022, vol. 197, no. 8, pp. 799–809. https://doi.org/10.1080/10426507.2022.2031196

    Article  CAS  Google Scholar 

  9. Chi, Y.S., Lin, H.P., and Mou, C.Y., CO oxidation over gold nanocatalyst confined in mesoporous silica, Appl. Catal. A, 2005, vol. 284, nos. 1–2, pp. 199–206. https://doi.org/10.1016/j.apcata.2005.01.034

    Article  CAS  Google Scholar 

  10. Al Soubaihi, R.M., Saoud, K.M., Ye, F., Myint, M.T.Z., Saeed, S., and Dutta, J., Synthesis of hierarchically porous silica aerogel supported palladium catalyst for low-temperature CO oxidation under ignition/extinction conditions, Micropor. Mesopor. Mater., 2020, vol. 292, p. 109758. https://doi.org/10.1016/j.micromeso.2019.109758

    Article  CAS  Google Scholar 

  11. Tokranova, E.O., Tokranov, A.A., Vinogradov, K.Yu., Shafigulin, R.V., and Bulanova, A.V., Mesoporous silica gel doped with dysprosium and modified with copper: A selective catalyst for the hydrogenation of 1-hexyne/1-hexene mixture, Int. J. Chem. Kinetics, 2022, vol. 54, no. 11, pp. 647–658. https://doi.org/10.1002/kin.21602

    Article  CAS  Google Scholar 

  12. Yang, Y., Xu, B., He, J., Shi, J., Yu, L., and Fan, Y., Magnetically separable mesoporous silica-supported palladium nanoparticle-catalyzed selective hydrogenation of naphthalene to tetralin, Appl. Organomet. Chem., 2019, vol. 33, no. 11, p. e5204. https://doi.org/10.1002/aoc.5204

    Article  CAS  Google Scholar 

  13. Mihalcik, D.J. and Lin, W., Mesoporous silica nanosphere-supported chiral ruthenium catalysts: synthesis, characterization, and asymmetric hydrogenation studies, ChemCatChem, 2009, vol. 1, no. 3, pp. 406–413. https://doi.org/10.1002/cctc200900188

  14. Lo, H.K., Thiel, I., and Copéret, C., Efficient CO2 hydrogenation to formate with immobilized Ir-catalysts based on mesoporous silica beads, Chem. A Eur. J., 2019, vol. 25, no. 40, pp. 9443–9446. https://doi.org/10.1002/chem.201901663

    Article  CAS  Google Scholar 

  15. Wang, H.M., Chen, Y., Yan, X., Lang, W.Z., and Guo, Y.J., Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol–gel process, Micropor. Mesopor. Mater., 2019, vol. 284, pp. 69–77. https://doi.org/10.1016/j.micromeso.2019.04.016

    Article  CAS  Google Scholar 

  16. Samanta, P.K., Ray, S., Das, T., Gage, S.H., Nandi, M., Richards, R.M., and Biswas, P., Palladium oxide nanoparticles intercalated mesoporous silica for solvent free acceptorless dehydrogenation reactions of alcohols, Micropor. Mesopor. Mater., 2019, vol. 284, pp. 186–197. https://doi.org/10.1016/j.micromeso.2019.04.034

    Article  CAS  Google Scholar 

  17. Finger, P.H., Osmari, T.A., Cabral, N.M., Bueno, J.M.C., and Gallo, J.M.R., Direct synthesis of Cu supported on mesoporous silica: Tailoring the Cu loading and the activity for ethanol dehydrogenation, Catal. Today, 2021, vol. 381, pp. 26–33. https://doi.org/10.1016/j.cattod.2020.10.019

    Article  CAS  Google Scholar 

  18. Bai, X., Lin, C., Wang, Y., Ma, J., Wang, X., Yao, X., and Tang, B., Preparation of Zn doped mesoporous silica nanoparticles (Zn–MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites, Dent. Mater., 2020, vol. 36, no. 6, pp. 794–807. https://doi.org/10.1016/j.dental.2020.03.026

    Article  CAS  PubMed  Google Scholar 

  19. Malhotra, R. and Ali, A., 5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil, Renew. Energy, 2019, vol. 133, pp. 606–619. https://doi.org/10.1016/j.renene.2018.10.055

    Article  CAS  Google Scholar 

  20. EL-Mahdy, A.F.M., Yu, T.C., and Kuo, S.W., Synthesis of multiple heteroatom-doped mesoporous carbon/silica composites for supercapacitors, Chem. Eng. J., 2021, vol. 414, p. 128796. https://doi.org/10.1016/j.cej.2021.128796

    Article  CAS  Google Scholar 

  21. Wu, Y.L., Han, Z.F., Yan, X., Lang, W.Z., and Guo, Y.J., Effective synthesis of vanadium-doped mesoporous silica nanospheres by sol–gel method for propane dehydrogenation reaction, Micropor. Mesopor. Mater., 2022, vol. 330, p. 111616. https://doi.org/10.1016/j.micromeso.2021.111616

    Article  CAS  Google Scholar 

  22. Zheng, B., Fan, J., Chen, B., Qin, X., Wang, J., Wang, F., Den R., and Liu, X., Rare-earth doping in nanostructured inorganic materials, Chem. Rev., 2022, vol. 122, no. 6, pp. 5519–5603. https://doi.org/10.1021/acs.chemrev.1c00644

    Article  CAS  PubMed  Google Scholar 

  23. Sibu, C.P., Kumar, S.R., Mukundan, P., and Warrier, K.G.K., Structural modifications and associated properties of lanthanum oxide doped sol–gel nanosized titanium oxide, Chem. Mater., 2002, vol. 14, no. 7, pp. 2876–2881. https://doi.org/10.1021/cm010966p

    Article  CAS  Google Scholar 

  24. Zykin, M.A., Dyakonov, A.K., Eliseev, A.A., Trusov, L.A., Kremer, R.K., Dinnebier, R.E., Jansen, M., and Kazin, P.E., Tb-based silicate apatites showing slow magnetization relaxation with identical parameters for the Tb3+ and Dy3+ counter ions, RSC Adv., 2021, vol. 11, no. 12, pp. 6926–6933. https://doi.org/10.1039/D1RA00613D

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Speight, J.G., Production, properties and environmental impact of hydrocarbon fuel conversion, Advances in Clean Hydrocarbon Fuel Processing, Woodhead Publishing, 2011, pp. 54–82. https://doi.org/10.1533/9780857093783.1.54

  26. Pan, H.B. and Wai, C.M., One-step synthesis of size-tunable rhodium nanoparticles on carbon nanotubes: a study of particle size effect on hydrogenation of xylene, J. Phys. Chem. C, 2010, vol. 114, no. 26, pp. 11364–11369. https://doi.org/10.1021/jp101368p

    Article  CAS  Google Scholar 

  27. Keane, M.A. (). The Hydrogenation of o-, m-, and p-xylene over Ni/SiO2, J. Catal., 1997, vol. 166, no. 2, pp. 347–355. https://doi.org/10.1006/jcat.1997.1527

    Article  CAS  Google Scholar 

  28. Filippova, E.O., Shafigulin, R.V., and Bulanova, A.V., Kinetic characteristics of catalysts based on mesoporous silica gel doped with Dy and modified with Ni, Cu, Ag, in hydrogenation of xylenes, Russ. J. Phys. Chem. A, 2021, vol. 95, no. 4, pp. 690–695. https://doi.org/10.1134/S0036024421040051

    Article  CAS  Google Scholar 

  29. Toppinen, S., Rantakylä, T.K., Salmi, T., and Aittamaa, J., Kinetics of the liquid phase hydrogenation of di-and trisubstituted alkylbenzenes over a nickel catalyst, Ind. Eng. Chem. Res., 1996, vol. 35, no. 12, pp. 4424–4433. https://doi.org/10.1021/ie950636c

    Article  CAS  Google Scholar 

  30. Mittendorfer, F. and Hafner, J., Hydrogenation of benzene on Ni (111) – a DFT study, J. Phys. Chem. B, 2002, vol. 106, no. 51, pp. 13299–13305. https://doi.org/10.1021/jp026010z

    Article  CAS  Google Scholar 

  31. Wojcieszak, R., Monteverdi, S., Mercy, M., Nowak, I., Ziolek, M., and Bettahar, M.M., Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sieves: Characteristics and activity in the hydrogenation of benzene, Appl. Catal. A, 2004, vol. 268, nos. 1–2, pp. 241–253. https://doi.org/10.1016/j.apcata.2004.03.047

    Article  CAS  Google Scholar 

  32. Keypour, H. and Noroozi, M., Hydrogenation of benzene in gasoline fuel over nanoparticles (Ni, Pt, Pd, Ru and Rh) supported fullerene: Comparison study, J. Appl. Chem., 2016, vol. 10, no. 37, pp. 31–42. https://doi.org/10.22075/CHEM.2017.718

    Article  Google Scholar 

  33. Wojcieszak, R., Jasik, A., Monteverdi, S., Ziolek, M., and Bettahar, M.M., Nickel niobia interaction in non-classical Ni/Nb2O5 catalysts, J. Mol. Catal. A Chem., 2006, vol. 256, nos. 1–2, pp. 225–233. https://doi.org/10.1016/j.molcata.2006.04.053

    Article  CAS  Google Scholar 

  34. Wang, W., High nickel- and titania-containing mesoporous silicas: synthesis and characterization, Doctoral Dissertation, Loughborough University, 2005.

  35. Barrio, V.L., Arias, P.L., Cambra, J.F., Güemez, M.B., Pawelec, B., and Fierro, J.L.G., Aromatics hydrogenation on silica–alumina supported palladium–nickel catalysts, Appl. Catal. A, 2003, vol. 242, no. 1, pp. 17–30. https://doi.org/10.1016/S0926-860X(02)00489-1

    Article  CAS  Google Scholar 

  36. Pawelec, B., Castano, P., Arandes, J. M., Bilbao, J., Thomas, S., Peña, M.A., and Fierro, J.L.G., Factors influencing the thioresistance of nickel catalysts in aromatics hydrogenation, Appl. Catal. A, 2007, vol. 317, no. 1, pp. 20–33. https://doi.org/10.1016/j.apcata.2006.09.035

    Article  CAS  Google Scholar 

  37. Barrio, V.L., Arias, P.L., Cambra, J.F., Güemez, M.B., Pawelec, B., and Fierro, J.L.G., Modification of the Pd/SiO2–Al2O3 catalyst’s thioresistance by the addition of a second metal (Pt, Ru, and Ni), Catal. Commun., 2004, vol. 5, no. 4, pp. 173–178. https://doi.org/10.1016/j.catcom.2004.01.004

    Article  CAS  Google Scholar 

  38. Louloudi, A. and Papayannakos, N., Hydrogenation of benzene on Ni/Al-pillared montmorillonite catalysts, Appl. Catal. A, 2000, vol. 204, no. 1, pp. 167–176. https://doi.org/10.1016/S0926-860X(00)00516-0

    Article  CAS  Google Scholar 

  39. Uttamaprakrom, W., Reubroycharoen, P., Charoensiritanasin, P., Tatiyapantarak, J., Srifa, A., Koo-Amornpattana, W., Chaiwat, W., Sakdaronnarong C., and Ratchahat, S., Development of Ni–Ce/Al–MCM-41 catalysts prepared from natural kaolin for CO2 methanation, J. Environ. Chem. Eng., 2021, vol. 9, no. 5, p. 106150. https://doi.org/10.1016/j.jece.2021.106150

    Article  CAS  Google Scholar 

  40. Spennati, E., Riani, P., and Garbarino, G., A perspective of lanthanide promoted Ni-catalysts for CO2 hydrogenation to methane: catalytic activity and open challenges, Catal. Today, 2023, vol. 418, p. 114131. https://doi.org/10.1016/j.cattod.2023.114131

    Article  CAS  Google Scholar 

  41. Shafigulin, R.V., Filippova, E.O., Shmelev, A.A., and Bulanova, A.V., Mesoporous silica doped with dysprosium and modified with nickel: a highly efficient and heterogeneous catalyst for the hydrogenation of benzene, ethylbenzene and xylenes, Catal. Lett., 2019, vol. 149, pp. 916–928. https://doi.org/10.1007/s10562-019-02678-x

    Article  CAS  Google Scholar 

  42. IUPAC Compendium of Chemical Terminology. Version 2.3.2. 2012-08-19. http://www.iupac.org/.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Morozov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokranov, A.A., Tokranova, E.O., Shafigulin, R.V. et al. Catalyst Based on Mesoporous Silica Gel Doped with Terbium and Modified with Nickel Obtained by High-Temperature Template Method for Aromatic Hydrocarbons Hydrogenation. Int. J Self-Propag. High-Temp. Synth. 33, 49–57 (2024). https://doi.org/10.3103/S1061386224010096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386224010096

Keywords:

Navigation