Skip to main content
Log in

Cobalt-Doped Nickel Zinc Nanoferrites by Solution-Combustion Synthesis: Structural and Elastic Parameters

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Cobalt-doped nickel zinc nanoferrites Ni0.45Zn0.55–xCoxFe2O4 (x = 0.0, 0.1, 0.2 and 0.3) with a particle size of 8–12 nm were prepared by solution-combustion synthesis (SCS) using sucrose as a fuel and characterized by XRD, FTIR, Raman, and TEM techniques. For synthesized materials, their structural and elastic parameters were determined as a function x. Our results may turn interesting to those engaged in combustion synthesis of ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Azadmanjiri, J., Structural and electromagnetic properties of Ni–Zn ferrites prepared by sol–gel combustion method, Mater. Chem. Phys., 2008, vol. 109, no. 1, pp. 109–112. https://doi.org/10.1016/j.matchemphys.2007.11.001

    Article  CAS  Google Scholar 

  2. Huo, J. and Wei, M.,Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method, Mater. Lett., vol. 63, nos. 13–14, pp. 1183–1184, 2009. https://doi.org/10.1016/j.matlet.2009.02.024

    Article  CAS  Google Scholar 

  3. Chen, D. and He, X., Synthesis of nickel ferrite nanoparticles by sol–gel method, Mater. Res. Bull., 2001, vol. 36, nos. 7–8, pp. 1369–1377. https://doi.org/10.1016/S0025-5408(01)00620-1

    Article  CAS  Google Scholar 

  4. Shi, Y., Ding, J., Tan, S.L.H., and Hu, Z., Ni/Fe2O3 magnetic composite synthesized by mechanical alloying, J. Magn. Magn. Mater., 2003, vol. 256, nos. 1–3, pp. 13–19. https://doi.org/10.1016/S0304-8853(01)00484-X

    Article  CAS  Google Scholar 

  5. Molakeri, A.S., Sangshetty Kalyane, and Mathad, S.N., Structural analysis of nano ferrites synthesized by combustion and microwave methods, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 44–50. https://doi.org/10.3103/S1061386218010053

    Article  CAS  Google Scholar 

  6. Kinemuchi, Y., Ishizaka, K., Suematsu, H., Jiang, W., and Yatsui, K., Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge, Thin Solid Films, 2002, vol. 407, nos. 1–2, pp. 109–113. https://doi.org/10.1016/S0040-6090(02)00021-4

    Article  CAS  Google Scholar 

  7. Liu, C., Zou, B., Rondinone, A.J., and Zhang, Z.J., Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites, J. Phys. Chem. B, 2000, vol. 104, no. 6, pp. 1141–1145. https://doi.org/10.1021/jp993552g

    Article  CAS  Google Scholar 

  8. Kashid, P., Mahadev Shedam, Kulkarni, A.B., Mathad, S.N., and Shedam, R., Synthesis and structural studies of nano Co0.85Cd0.15Fe2O4 ferrite by Co-precipitation method, J. Adv. Phys., 2017, vol. 6, pp. 545–548. https://doi.org/10.1166/jap.2017.1373

    Article  Google Scholar 

  9. Chen, D., Jiao, X., Zhao, Y., and He, M., Hydrothermal synthesis and characterization of octahedral nickel ferrite particles, Powder Technol., 2003, vol. 133, nos. 1–3, pp. 247–250. https://doi.org/10.1016/S0032-5910(03)00079-2

    Article  CAS  Google Scholar 

  10. Elmasry, M.A.A., Gaber, A., and Khater, E.M.H., Preparation of nickel ferrite using the aerosolization technique: I . Aerosolization behavior of individual raw material solutions, Powder Technol., 1997, vol. 90, no. 2, pp. 161–164. https://doi.org/10.1016/S0032-5910(96)03216-0

    Article  CAS  Google Scholar 

  11. Cullity, B.D., Elements of X-Ray Diffraction, Boston: Addison–Wesley, 1956.

    Google Scholar 

  12. Belavi, P.B., Naik, L.R., and Chavan, G.N.,Synthesis and characterization of Ni–Cd–Cu ferrites, J. Shivaji Univ: Sci. Technol., 2015, vol. 41, no. 2, pp. 1–2.

    Google Scholar 

  13. Köseoglu,Y., Baykal, A., Gözüak, F., and Kavas, H., Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method, Polyhedron, 2009, vol. 28, pp. 2887–2892. https://doi.org/10.1016/j.poly.2009.06.061

    Article  CAS  Google Scholar 

  14. Tatarchuk, T.R., Bououdina, M., Paliychuk, N.D., Yaremiy, I.P., and Moklyak, V.V., Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites, J. Alloys Comp., 2017, vol. 694, no. 5, pp. 777–791. https://doi.org/10.1016/j.jallcom.2016.10.067

    Article  CAS  Google Scholar 

  15. Javad, M., Myndyk, M., Menzel, D., Feldhoff, A., Amighian, J., and Šepelák, V., Magnetic properties of nanostructured MnZn ferrite, J. Magn. Magn. Mater., 2009, vol. 321, no. 3, pp. 152–156. https://doi.org/10.1016/j.jmmm.2008.08.054

    Article  CAS  Google Scholar 

  16. Maensiri, S., Masingboon, C., and Seraphin, S., A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white, Scr. Mater., 2007, vol. 56, no. 9, pp. 797–800. https://doi.org/10.1016/j.scriptamat.2006.09.033

    Article  CAS  Google Scholar 

  17. Maaz, K., Karim, S., Mashiatullah, A., Liu, J., Hou, M.D., Sun, Y.M., Duan, J.L., Yao, H.J., Mo, D., and Chen, Y.F., Structural analysis of nickel doped cobalt ferrite nanoparticles prepared by coprecipitation route, Physica B: Condens. Matter, 2009, vol. 404, no. 21, pp. 3947–3951. https://doi.org/10.1016/j.physb.2009.07.134

    Article  CAS  Google Scholar 

  18. Zi, Z., Sun, Y., Zhu, X., Yang, Z., Dai, J., and Song, W., Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles, J. Magn. Magn. Mater., 2009, vol. 321, pp. 1251–1255. https://doi.org/10.1016/j.jmmm.2008.11.004

    Article  CAS  Google Scholar 

  19. Mazen, S.A., IR spectra, elastic and dielectric properties of Li–Mn ferrite, ISRN Condens. Matter Phys., 2012, 907257. https://doi.org/10.5402/2012/907257

  20. Waldron, R.D., Infrared spectra of ferrites, Phys. Rev., 1955, vol. 99, no. 6, pp. 1725–1727. https://doi.org/10.1103/PhysRev.99.1727

    Article  Google Scholar 

  21. Watawe, S.C., Sutar, B.D., Sarwade, B.D., and Chougule, B.K., Infrared studies of some mixed Li–Co ferrites, Int. J. Inorg. Mater., 2001, vol. 3, no. 7, pp. 819–823. https://doi.org/10.1016/S1466-6049(01)00174-X

    Article  CAS  Google Scholar 

  22. Modi, K.B., Rangolia, M.K., Chhantbar, M.C., and Joshi, H.H., Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites, J. Mater. Sci., 2006, vol. 47, pp. 7308–7318. https://doi.org/10.1007/s10853-006-0929-3

    Article  CAS  Google Scholar 

  23. Ravinder, D. and Alivelumanga, T., Composition dependence of elastic behaviour of mixed manganese–zinc ferrites, Mater. Lett.,1998, vol. 37, nos. 1–2, pp. 51–56. https://doi.org/10.1016/S0167-577X(98)00062-7

    Article  CAS  Google Scholar 

  24. Ravinder, D., Elastic behavior of Cu–Zn ferrites, Mater. Lett., 1999, vol. 38, no. 1, pp. 22–27. https://doi.org/10.1016/S0167-577X(98)00126-8

    Article  CAS  Google Scholar 

  25. Venudhar,Y.C. and Mohan, K.S., Elastic behaviour of lithium–cobalt mixed ferrites, Mater. Lett., 2002, vol. 55, no. 3, pp. 196–199. https://doi.org/10.1016/S0167-577X(01)00645-0

    Article  CAS  Google Scholar 

  26. Wooster, W.A, Physical properties and atomic arrangements in crystals, Rep. Prog. Phys., 1953, vol. 16, pp. 62–82. https://doi.org/10.1088/0034-4885/16/1/302

    Article  Google Scholar 

  27. Galagali, S.L, Patil, R.A, Adaki, R.B., Hiremath, C.S., Mathad, S.N., and Pujar, R.B., FTIR and elastic properties of Mg1–xCdxFe2O4 ferrite systems, Songklanakarin J. Sci. Technol., 2019, vol. 41, no. 5, pp. 992–998.

    CAS  Google Scholar 

  28. Rajesh, B. and Tatarchuk, T., Elastic properties and antistructural modeling for nickel–zinc ferrite-aluminates, Mater. Chem. Phys., 2018, vol. 207, pp. 534–541. https://doi.org/10.1016/j.matchemphys.2017.12.084

    Article  CAS  Google Scholar 

  29. Algude, S.G., Patange, S.M., Shirsath, S.E., Mane, D.R., and Jadhav, K.M., Elastic behavior of Cr3+ substituted Co–Zn ferrites, J. Magn. Magn. Mater., 2014, vol. 350, no. 1, pp. 39–41. https://doi.org/10.1016/j.jmmm.2013.09.021

    Article  CAS  Google Scholar 

  30. Kumar, A., Sharma, P., and Varshney, D., Structural, vibrational, and dielectric study of Ni doped spinel Co ferrites, 2014, vol. 4, no. 1, pp. 1–6. https://doi.org/10.1016/j.ceramint.2014.04.140

  31. Gupta, R., Sood, A.K., Metcalf, P., and Honig, J.M., Raman study of stoichiometric and Zn-doped Fe3O4, Phys. Rev. B, 2002, vol. 65, no. 1, pp. 1–8. https://doi.org/10.1103/PhysRevB.65.104430

    Article  CAS  Google Scholar 

  32. Gasparov, L.V and Tanner, D.B., Infrared and Raman studies of the Verwey transition in magnetite, Phys. Rev. B, 2000, vol. 62, no. 12, pp. 7939–7944. https://doi.org/10.1103/PhysRevB.62.7939

    Article  CAS  Google Scholar 

  33. Mohit, K., Rout, S.K., Parida, S., Singh, G.P., Sharma, S.K., Pradhan, S.K., and Kim, W., Structural, optical and dielectric studies of NixZn1–xFe2O4 prepared by auto combustion route, Physics B: Condens. Matter, 2012, vol. 407, no. 6, pp. 935–942. https://doi.org/10.1016/j.physb.2011.12.003

    Article  CAS  Google Scholar 

  34. Jacintho, G.V.M., Brolo, A.G., Corio, P., Suarez, P.A.Z., and Rubim, J.C., Structural investigation of MFe2O4 (M = Fe, Co) magnetic fluids, J. Phys. Chem. C, 2009, vol. 4, pp. 7684–7691. https://doi.org/10.1021/jp9013477

    Article  CAS  Google Scholar 

  35. Edward, P., Mathematical Techniques in Crystallography and Materials Science, New York–Heidelberg–Berlin: Springer, 1982.

    Google Scholar 

  36. Wang, Z., Schiferl, D., Zhao, Y., and Neill, H.S.C.O., High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4, J. Phys. Chem. Solids, 2003, vol. 64, no. 12, pp. 2517–2523. https://doi.org/10.1016/j.jpcs.2003.08.005

    Article  CAS  Google Scholar 

  37. Mohit, K., Rani, V., Gupta, N., and Rout, S.K., Structural and microwave characterization of Ni0.2CoxZn0.8–xFe2O4 for antenna applications, Ceram. Int., 2014, vol. 40, no. 1, pp. 1575–1586. https://doi.org/10.1016/j.ceramint.2013.07.045

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. M. Shweta or S. N. Mathad.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shweta, G.M., Naik, L.R., Pujar, R.B. et al. Cobalt-Doped Nickel Zinc Nanoferrites by Solution-Combustion Synthesis: Structural and Elastic Parameters. Int. J Self-Propag. High-Temp. Synth. 29, 157–161 (2020). https://doi.org/10.3103/S1061386220030115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220030115

Keywords:

Navigation