Fine Ti Powders Through Metallothermic Reduction in TiO2–Mg–Ca Mixtures

  • V. I. VershinnikovEmail author
  • T. I. Ignat’eva
  • V. V. Aleshin
  • Yu. M. Mikhailov


Fine Ti powders were prepared through magnesiothermic reduction in TiO2–Mg–Ca mixtures under 4 MPa of Ar followed by acid leaching (with HCl or HNO3) and characterized by XRD, SEM/EDS, and chemical analysis. Thus prepared Ti powders exhibited the specific surface ranging between 7.0 and 30.0 m2/g. The produced Ti powders can find their application in pyrotechnics, powder metallurgy, and as raw material for SHS of inorganic compounds.


SHS combustion synthesis magnesiothermy titanium dioxide titanium powder acid leaching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Titanium and Titanium Alloys: Fundamentals and Applications, Leyens, C. and Peters, M., Eds., Weinheim: Wiley–VCH, 2003. Scholar
  2. 2.
    Froes, F.H. and Eylon, D., Powder metallurgy of titanium alloys, Int. Mater. Rev., 1990, vol. 35, no. 3, pp. 162–182. doi 10.1179/095066090790323984CrossRefGoogle Scholar
  3. 3.
    Kroll, W.J., The production of ductile titanium, Trans. Electrochem. Soc., 1940, vol. 78, no. 1, pp. 35–47. doi 10.1149/1.3071290CrossRefGoogle Scholar
  4. 4.
    Du, J., Research progress of titanium production technology, Rare Met. Mater. Eng., 2008, vol. 37, no. 10, pp. 1872–1875. doi 10.1007/s11771-012-1293-xGoogle Scholar
  5. 5.
    Ogasawara, T., Progress of the titanium production technology in Japan and future prospects of the field, Jpn. Titanium Soc., 2005, vol. 53, no. 2, pp. 103–108.Google Scholar
  6. 6.
    Zheng, H., Ito, H., and Okabe, T.H., Production of titanium powder by the calciothermic reduction of titanium concentrates or ore using the preform reduction process, Mater. Trans., 2007, vol. 48, no. 8, pp. 2244–2251. doi 10.2320/matertrans.MER2007115CrossRefGoogle Scholar
  7. 7.
    Okabe, T.H., Odab, T., and Mitsuda, Y. Titanium powder production by preform reduction process (PRP), J. Alloys Comp., 2004, vol. 364, nos. 1–2, pp. 156–163. Scholar
  8. 8.
    Chen, G.Z., Fray, D.J., and Farthing, T.W., Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 2000, vol. 407, no. 5, pp. 361–364. doi 10.1038/35030069Google Scholar
  9. 9.
    Suzuki, R.O., Teranuma, K., and Ono, K., Calciothermic reduction of titanium oxide by electrolysis in molten CaCl2, Metall. Mater. Trans. B, 2003, vol. 34, no. 6, pp. 287–295. doi 10.1007/s11663-003-0074-1CrossRefGoogle Scholar
  10. 10.
    Nersisyan, H.H., Won, H.I., Won, C.W., Jo, A.J., and Kim, H., Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis, Chem. Eng. J., 2014, vol. 235, no. 1, pp. 67–74. Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. I. Vershinnikov
    • 1
    Email author
  • T. I. Ignat’eva
    • 1
  • V. V. Aleshin
    • 2
  • Yu. M. Mikhailov
    • 2
  1. 1.Institute of Structural Macrokinetics and Materials ScienceRussian Academy of SciencesChernogolovka, MoscowRussia
  2. 2.Institute for Problems in Chemical PhysicsRussian Academy of SciencesChernogolovka, MoscowRussia

Personalised recommendations