Skip to main content
Log in

Combustion synthesis of nanocrystalline nickel ferrite using hexamine as a fuel

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Nanocrystalline nickel ferrite has been synthesized by novel combustion method using hexamine as a fuel and metal nitrates as oxidizers. The prepared compounds were sintered at 750°C. The synthesized ferrite powders were characterized by XRD, FTIR, EDAX, and SEM. XRD data confirm the formation of single-phase spinel nickel ferrite compound. FTIR spectra show the stretching and bending vibrations of Ni-O and Fe-O bonds in nickel ferrite. The elemental composition of the synthesized compound was assessed by EDAX analysis. The morphological features of the ferrite powders were scrutinized by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, Y.I., Kim, D., and Lee, C.S., Physica B, 2003, vol. 337, pp. 42–51.

    Article  CAS  Google Scholar 

  2. Caizer, C., Popovici, M., and Savii, C., Acta Mater., 2003, vol. 51, pp. 3607–3616.

    Article  CAS  Google Scholar 

  3. Kim, D.K., Zhang, Y., Voit, W., Rao, K.V., and Muhammed, M., J. Magn. Magn. Mater, 2001, vol. 225, pp. 30–36.

    Article  CAS  Google Scholar 

  4. Sathyanarayana, L., Madusudhanreddy, K., and Manorama, S.V., Mater. Chem. Phys, 2003, vol. 82, pp. 21–26.

    Article  Google Scholar 

  5. Alcantra, R., Jaraba, M., Lavela, P., Tirado, J.L., Jumas, J.C., and Oliver, J., Electrochem. Commun., 2003, vol. 5, pp. 16–21.

    Article  Google Scholar 

  6. Bao, N.Z., Shen, L.M., Padhan, P., and Gupta, A., J. Am. Chem. Soc., 2007, vol. 129, pp. 12374–12375.

    Article  CAS  Google Scholar 

  7. Wang, Z.L., Liu, X.J., Lu, M.F., Chai, P., Liu, Y., and Meng, J., J. Phys. Chem. B, 2008, vol. 112, pp. 11292–11297.

    Article  CAS  Google Scholar 

  8. Kislov, N., Srinivasan, S.S., Emirov, Yu., and Stefanakos, E.K., Mater. Sci. Eng. B, 2008, vol. 153, pp. 70–77.

    Article  CAS  Google Scholar 

  9. Smit, J. and Wijn, H.P.J., Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to their Technical Applications, London: Cleaver-Hume Press, 1959.

    Google Scholar 

  10. Shin, Y.J. and Oh, J.H., IEEE Trans. Magn., 1993, vol. 29, pp. 3437–3439.

    Article  Google Scholar 

  11. Yin, H. and Chow, G.M., Mater. Res. Bull., 2008, vol. 23, pp. 1922–1930.

    CAS  Google Scholar 

  12. Chatterjee, A., Das, D., Pradhan, S.K., and Chakravorthy, D., J. Magn. Magn. Mater., 1993, vol. 127, nos. 1–2, pp. 214–218.

    Article  CAS  Google Scholar 

  13. Dong, W.C., Xin, H., and Kong, H., Mater. Res. Bull., 2001, vol. 36, nos. 7–8, pp. 1369–1377.

    Google Scholar 

  14. Verma, A., Goel, T.C., Mendiratta, R.G., and Gupta, R.G., J. Magn. Magn. Mater, 1999, vol. 192, pp. 271–276.

    Article  CAS  Google Scholar 

  15. Jiang, J. and Yang., Y.M., Mater. Lett., 2007, vol. 61, pp. 4276–4279.

    Article  CAS  Google Scholar 

  16. Pathak, A., Kulkarni, S.D., Date, S.K., and Pramanik, P., Nanostruct. Mater, 1997, vol. 8, pp. 101–117.

    Article  CAS  Google Scholar 

  17. Maaz, K., Karim, S., Mumtaz, A., Hasanain, S.K., Liu, J., and Duan, J.L., J. Magn. Magn. Mater., 2009, vol. 321, pp. 1838–1842.

    Article  CAS  Google Scholar 

  18. Venkataraju, C., Sathishkumar, G., and Sivakumar, K., J. Magn. Magn. Mater., 2010, vol. 322, pp. 230–233.

    Article  CAS  Google Scholar 

  19. Lisjak, D., Znidarsic, A., Sztanislav, A., and Drofenik, M., J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2057–2062.

    Article  CAS  Google Scholar 

  20. Misra, R.D.K., Gubbala, S., Kale, A., and Egelhoff Jr., W.F.A., Mater. Sci. Eng. B, 2004, vol. 111, pp. 164–174.

    Article  Google Scholar 

  21. Huo, J. and Wei., M., Mater. Lett., 2009, vol. 63, pp. 1183–1184.

    Article  CAS  Google Scholar 

  22. Li, X. and Wang, G., J. Magn. Magn. Mater., 2009, vol. 32, pp. 1276–1279.

    Article  Google Scholar 

  23. Walton Jr, J.D. and Poulos, N.E., J. Am. Ceram. Soc., 1959, vol. 42, no. 1, pp. 40–49.

    Article  CAS  Google Scholar 

  24. Borovinskaya, I.P., Merzhanov, A.G., Novikov, N.P., and Filonenko, A.K., Combust. Explos. Shock Waves, 1974, vol. 10, no. 1, pp 2–10.

    Article  Google Scholar 

  25. Merzhanov, A.G., Filonenko, A.K., and Borovinskaya I.P., Dokl. Akad. Nauk SSSR, 1977, vol. 208, no. 4, pp. 892–894.

    Google Scholar 

  26. Merzhanov, A.G., Karyuk, G.G., Borovinskaya, I.P., Prokudina, V.K., and Dyadko, E.G., Sov. Powder Metall. Met. Ceram., 1981, vol. 20, nos. 9–12, pp. 709–713.

    Article  Google Scholar 

  27. Holt, J.B. and Munir, Z.A., J. Mater. Sci., 1986, vol. 21, no.1, pp. 251–259.

    Article  Google Scholar 

  28. Zenin, A.A., Merzhanov, A.G., and Nersesyan, G.A., Combust. Explos. Shock Waves, 1981, vol. 17, no. 1. pp. 63–71.

    Article  Google Scholar 

  29. Munir, Z.A. and Holt, J.B., J. Mater. Sci., 1987, vol. 22, no. 4, pp. 710–714.

    Article  CAS  Google Scholar 

  30. Borovinskaya, I.P. and Loryan, V.E., Sov. Powder Metall. Met. Ceram., 1979, vol. 191, pp. 851–853.

    Google Scholar 

  31. Maksimov, Yu.M., Ziatdinov, M.Kh., Raskolenko, A.G., and Lepakova, O.K., Combust. Explos. Shock Waves, 1979, vol. 15, pp. 420–424.

    Article  Google Scholar 

  32. Sarkisyan, A.R., Dolukhanyan, S.K., and Borovinskaya, I.P., Sov. Powder Metall. Met. Ceram., 1978, vol. 17, nos. 5–8, pp. 424–427.

    Article  Google Scholar 

  33. Philpot, K.A., Munir, Z.A., and Holt, J.B., J. Mater. Sci., 1987, vol. 22, pp. 159–169.

    Article  CAS  Google Scholar 

  34. Dunmead, S.D., Readey, D.W., Semler, C.E., and Holt, J.B., J. Am. Ceram. Soc., 1989, vol. 72, no. 12, pp. 2318–2324.

    Article  CAS  Google Scholar 

  35. Bergmann O.R. and Barrington, J., J. Am. Ceram. Soc., 1966, vol. 49, no. 6, pp. 502–507.

    Article  CAS  Google Scholar 

  36. Jain, S.R., Adiga, K.C., and Pai Verneker, V.R., Combust. Flame, 1981, vol. 40, pp. 71–79.

    Article  CAS  Google Scholar 

  37. Lange’s Handbook of Chemistry, Dean, J.A., Ed., New York: McGraw-Hill, 1979.

    Google Scholar 

  38. Blazevic, N., Kolbah, D., Belin, B., Sunjic, V., and Kajfez, F., Synthesis, 1979, vol. 14, pp. 161–179.

    Article  Google Scholar 

  39. Subramania, A., Angayarkanni, N., and Vasudevan, T., Mater. Chem. Phys., 2007, vol. 102, pp. 19–23.

    Article  CAS  Google Scholar 

  40. Wang, J., Wang, Y., Qiao, M., Xie, S., and Fan, K., Mater. Lett., 2007, vol. 61, pp. 5074–5077.

    Article  CAS  Google Scholar 

  41. Weinzierl, D., Touraud, D., Lecker, A., Pfitzner, A., and Kunz, W., Mater. Res. Bull., 2008, vol. 43, pp. 62–67.

    Article  CAS  Google Scholar 

  42. Leunga, Y.H., Djuris, A.B., Liua, Z.T., Lia, D., Xiea, M.H., and Chan, W.K., J. Phys. Chem. Solids, 2008, vol. 69, pp. 353–357.

    Article  Google Scholar 

  43. Prakash, A.S., Khadar, A.M.A., Patil, K.C., and Hedge, M.S., J. Mater. Synth. Process., 2002, vols. 3,10, pp. 135–141.

    Article  Google Scholar 

  44. Chouziera, S., Afanasiev, P., Vrinata, M., Cserib, T., and Roy-Auberger, M., J. Solid State Chem., 2006, vol. 179, pp. 3314–3332.

    Article  Google Scholar 

  45. Wang, H., Li, W., and Zhang, M., Chem. Mater., 2005, vol. 17, pp. 3262–3267.

    Article  CAS  Google Scholar 

  46. Wang, H.-M., Wang, X.-H., Zhang, M.-H., Du, X.-Y., Li, W., and Tao, K.-Y., Chem. Mater., 2007, vol. 19, pp. 1801–1807.

    Article  CAS  Google Scholar 

  47. Wang, H., Du, X., Zhang, M.-H., Li, W., and Tao, K.-Y., Catal. Today, 2008, vol. 131, pp. 156–161.

    Article  CAS  Google Scholar 

  48. Afanasiev, P., Inorg. Chem., 2002, vol. 41, pp. 5317–5319.

    Article  Google Scholar 

  49. Roy, P.K. and Bera, J., J. Magn. Magn. Mater., 2006, vol. 298, pp. 38–42.

    Article  CAS  Google Scholar 

  50. Balaji, S., Kalaiselvan, R., John Berchmans, L., Angappan, S., Subramanian, K., and Augustin, C.O., Mater. Sci. Eng. B, 2005, vol. 119, pp. 119–124.

    Article  Google Scholar 

  51. Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., and Exarhos, G.J., Mater. Lett., 1990, vol. 10, no. 1, pp. 6–12.

    Article  CAS  Google Scholar 

  52. Patil, KC., Bull. Mater. Sci., 1993, vol. 16, no. 6, pp. 533–541.

    Article  CAS  Google Scholar 

  53. Joint Committee on Powder Diffraction Standards (JCPDS), Powder Diffraction File (PDF), Newton Square, PA: International Center for Diffraction Data, 2004.

  54. Kamala Bharathi, K., Balamurugan, K., Santhosh, P.N., Pattabiraman, M., and Markandeyulu, G., Phys. Rev. B, 2008, vol. 77, pp. 172401–172405.

    Article  Google Scholar 

  55. Gul, I.H., Abbasi, A.Z., Amin, F., Anis-ur-Rehman, M., and Maqsood, A., J. Magn. Magn. Mater., 2007, vol. 311, pp. 494–499.

    Article  CAS  Google Scholar 

  56. Sankaranarayanan, V.K. and Gajbhiye, N.S., J. Am. Ceram. Soc., 1990, vol. 73, pp. 1301–1307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Berchmans.

About this article

Cite this article

Parthasarathi, R., Berchmans, L.J., Preetha, R. et al. Combustion synthesis of nanocrystalline nickel ferrite using hexamine as a fuel. Int. J Self-Propag. High-Temp. Synth. 20, 236–240 (2011). https://doi.org/10.3103/S1061386211040108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386211040108

Keywords

Navigation