Skip to main content
Log in

On convergence analysis of space homeomorphisms

  • Published:
Siberian Advances in Mathematics Aims and scope Submit manuscript

Abstract

Various theorems on convergence of general spatial homeomorphisms are proved and, on this basis, theorems on convergence and compactness for classes of the so-called ring Q-homeomorphisms are obtained. In particular, it is established that a family of all ring Q-homeomorphisms f in ℝn fixing two points is compact provided that the function Q is of finite mean oscillation. The corresponding applications have been given to mappings in the Sobolev classes W 1,ploc for the case p > n − 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Astala, “A remark on quasiconformal mappings and BMO-functions,” Michigan Math. J. 30, 209–212 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Astala and F. W. Gehring, “Injectivity, the BMO norm and the universal Teichmuller space,” J. Anal. Math. 46, 16–57 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. M. Balogh, “Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group,” J. Anal. Math. 83, 289–312 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. M. Balogh, R. Monti, and J. T. Tyson, Frequency of Sobolev and qusiconformal dimension distortion, Research Report 2010-11, 22. 07. 2010, 1–36.

    Google Scholar 

  5. Z. Birnbaum and W. Orlicz, “Über die Verallgemeinerungen des Begriffes der zueinauder konjugierten Potenzen,” Studia. Math. 3, 1–67 (1931).

    Google Scholar 

  6. C. J. Bishop, “Quasiconformal mappings which increase dimension,” Ann. Acad. Sci. Fenn. 24, 397–407 (1999).

    MATH  Google Scholar 

  7. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On Beltrami equations with two characteristics,” Complex Variables and Elliptic Equations 54(10), 933–950 (2009).

    Article  MathSciNet  Google Scholar 

  8. M. Brakalova and J. Jenkins, “On solutions of the Beltrami equation. II.,” Publ. Inst. Math. (Beograd) (N. S.) 75(89), 3–8 (2004).

    Article  MathSciNet  Google Scholar 

  9. A. P. Calderon, “On the differentiability of absolutely continuous functions,” Riv. Math. Univ. Parma 2, 203–213 (1951).

    MathSciNet  MATH  Google Scholar 

  10. L. Cesari, “Sulle transformazioni continue,” Annali diMat. Pura ed Appl. IV(21), 157–188 (1942).

    Article  MathSciNet  Google Scholar 

  11. M. Csörnyei, S. Hencl, and J. Maly, Homeomorphisms in the Sobolev space W 1,n−1, PreprintMATHKMA-2007/252, Prague Charles Univ., (2007), 1–15.

    Google Scholar 

  12. N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory (Interscience Publishers, New York, 1957).

    Google Scholar 

  13. J. Dugundji, Topology (Allyn and Bacon, Inc., Boston, 1966).

    MATH  Google Scholar 

  14. A. G. Fadell, “A note on a theorem of Gehring and Lehto,” Proc. Amer. Math. Soc. 49, 195–198 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Federer, Geometric Measure Theory (Springer, Berlin etc., 1969).

    MATH  Google Scholar 

  16. B. Fuglede, “Extremal length and functional completion,” ActaMath. 98, 171–219 (1957).

    MathSciNet  MATH  Google Scholar 

  17. F. W. Gehring, “A remark on themoduli of rings,” Comment Math. Helv. 36, 42–46 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc. 103, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. W. Gehring and O. Lehto, “On the total differentiability of functions of a complex variable,” Ann. Acad. Sci. Fenn. Ser. A I Math. 272, 3–8 (1959).

    MathSciNet  Google Scholar 

  20. F. W. Gehring and J. Väisälä, “Hausdorff dimension and quasiconformal mappings,” J. London Math. Soc. 6(2), 504–512 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. M. Goldshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Distributional Derivatives and Quasiconformal Mappings (Nauka, Moscow, 1983) [Quasiconformal Mappings and Sobolev Spaces (Kluwer, Dordrecht, 1990)].

    Google Scholar 

  22. V. Y. Gutlyanskiĭ, O. Martio, V. I. Ryazanov, and M. Vuorinen, “On convergence theorems for space quasiregular mappings,” ForumMath. 10, 353–375 (1998).

    Google Scholar 

  23. V. Gutlyanskiĭ, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach, Developments inMathematics, Vol. 26 (Springer, New York etc., 2012).

    Book  Google Scholar 

  24. J. Hesse, “A p-extremal length and p-capacity equality”, Ark. Mat. 13 (1975), 131–144.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, 1948.

    MATH  Google Scholar 

  26. T. Iwaniec, P. Koskela, and J. Onninen, “Mappings of finite distortion: Compactness,” Ann. Acad. Sci. Fenn. Math. 27(2), 391–417 (2002).

    MathSciNet  MATH  Google Scholar 

  27. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2001.

    Google Scholar 

  28. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Math. Bull. 2(3), 395–417 (2005).

    MathSciNet  MATH  Google Scholar 

  29. T. Iwaniec and V. Sverak, “On mappings with integrable dilatation,” Proc. Amer. Math. Soc. 118, 181–188 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math. 14, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  31. P. M. Jones, “Extension theorems for BMO,” Indiana Univ. Math. J. 29, 41–66 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Kauhanen, P. Koskela, and J. Maly, “On functions with derivatives in a Lorentz space,” ManuscriptaMath. 10, 87–101 (1999).

    Article  MathSciNet  Google Scholar 

  33. Yu. Kolomoitsev and V. Ryazanov, “Uniqueness of approximate solutions of the Beltrami equations,” Proc. Inst. Appl. Math. Mech. NASU 19, 116–124 (2009).

    MATH  Google Scholar 

  34. D. Kovtonyuk, I. Petkov, and V. Ryazanov, On the boundary behavior of solutions to the Beltrami equations, Complex Variables and Elliptic Equations, DOI: 10. 1080/17476933. 2011. 603494, online from 14 Sep 2011 (expected in print at 2013).

  35. D. Kovtonyuk and V. Ryazanov, “On the theory of lower Q-homeomorphisms,” Ukr. Mat. Visn. 5(2), 159–184 (2008) [Ukr. Math. Bull. 5 (2), 157–181 (2008)].

    MathSciNet  Google Scholar 

  36. D. Kovtonyuk and V. Ryazanov, “On the theory of mappings with finite area distortion,” J. Anal. Math. 104, 291–306 (2008).

    Article  MathSciNet  Google Scholar 

  37. D. Kovtonyuk, V. Ryazanov, R. Salimov, and E. Sevost’yanov, “On mappings in the Orlicz-Sobolev classes,” Ann. Univ. Bucharest, Ser. Math. 3(LXI) (1), 67–78 (2012).

    MathSciNet  Google Scholar 

  38. K. Kuratowski, Topology. Vol. 1 (Academic Press, New York, London, 1966).

    Google Scholar 

  39. K. Kuratowski, Topology. Vol. 2 (Academic Press, New York, London, 1968).

    Google Scholar 

  40. T. Lomako, R. Salimov, and E. Sevost’yanov, “On equicontinuity of solutions to the Beltrami equations,” Ann. Univ. Bucharest, Math. Ser., LIX(2), 263–274 (2010).

    MathSciNet  Google Scholar 

  41. O. Lehto and K. Virtanen, “Quasiconformal Mappings in the Plane” (Springer, New York etc., 1973).

    Book  MATH  Google Scholar 

  42. J. Maly, “A simple proof of the Stepanov theorem on differentiability alsmost everywhere,” Exposition Math. 17, 59–61 (1999).

    MathSciNet  Google Scholar 

  43. J. Maly and O. Martio, “Lusin’s condition (N) and mappings of the class W 1,n,” J. Reine Angew. Math. 485, 19–36 (1995).

    MathSciNet  Google Scholar 

  44. M. Marcus and V. Mizel, “Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems,” Bull. Amer. Math. Soc. 79(4), 790–795 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  45. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Mathematics (Springer, New York etc., 2009).

    MATH  Google Scholar 

  46. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. Anal. Math. 93, 215–236 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  47. O. Martio, V. Ryazanov, and M. Vuorinen, “BMO and Injectivity of Space Quasiregular Mappings,” Math. Nachr. 205 149–161 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  48. V. Maz’ya, Sobolev Spaces (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  49. D. Menchoff, “Sur les differencelles totales des fonctions univalentes,” Math. Ann. 105, 75–85 (1931).

    Article  MathSciNet  Google Scholar 

  50. V. M. Miklyukov, “On criteria for existence of total differential,” Sibirsk. Mat. Zh. 51(4), 805–814 (2010) [SiberianMath. J. 51 (4), 639–647 (2010)].

    MathSciNet  Google Scholar 

  51. R. Näkki, “Boundary behavior of quasiconformal mappings in n-space,” Ann. Acad. Sci. Fenn. Ser. A. 484, 1–50 (1970).

    Google Scholar 

  52. M. Ohtsuka, “Limiting property of extremal length, problems in the theory of quasiconformal mappings,” Lecture Notes inMath. 1039, 466–467 (1983).

    Article  MathSciNet  Google Scholar 

  53. J. Onninen “Differentiability of monotone Sobolev functions,” Real. Anal. Exchange 26(2) (2000/01), 761–772.

    MathSciNet  Google Scholar 

  54. W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B, Bull. Intern. de l’Acad. Pol. Serie A (Cracovie, 1932).

    Google Scholar 

  55. S. P. Ponomarev, “An example of an ACTLp homeomorphism that is not absolutely continuous in the sense of Banach,” Dokl. Akad. Nauk SSSR 201 (1971), 1053–1054.

    MathSciNet  Google Scholar 

  56. S. P. Ponomarev, “On the (N)-property of homeomorphisms of the class W p1 ”, Sibirsk. Mat. Zh. 28(2), 140–148 (1987) [SiberianMath. J. 28 (2), 291–298 (1987)].

    MathSciNet  MATH  Google Scholar 

  57. T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis (Springer-Verlag, Berlin, 1955).

    Book  MATH  Google Scholar 

  58. K. Rajala, A. Zapadinskaya, and T. Zürcher, Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings, ArXiv:1007. 2091v1 [math. CA], 1–13 (2010).

    Google Scholar 

  59. H. M. Reimann and T. Rychener, Funktionen Beschränkter Mittlerer Oscillation (Springer, Berlin etc., 1975).

    Google Scholar 

  60. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion (Nauka, Novosibirsk, 1982; Math. Mon., 73, Amer. Math. Soc., Providence, RI, 1988).

    Google Scholar 

  61. Yu. G. Reshetnyak, “Some geometric properties of functions and mappings with generalized derivatives,” Sibirsk. Mat. Zh. 7(4), 886–919 (1966) [Siberian Math. J. 7 (4), 704–732].

    Google Scholar 

  62. W. Rudin, Function Theory in Polydisks, Math. Lect. Notes Ser. (W. A. Benjamin INC, New York, Amsterdam, 1969).

    Google Scholar 

  63. V. Ryazanov and E. Sevost’yanov, “Toward the theory of ring Q-homeomorphisms,” Israel Math. J. 168, 101–118 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  64. V. Ryazanov and E. Sevost’yanov, “Equicontinuity of mappings quasiconformal in the mean,” Ann. Acad. Sci. Fenn., Math. 36, 231–244 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  65. V. Ryazanov and E. Sevost’yanov, “On compactness of Orlicz-Sobolev mappings,” Ann. Univ. Bucharest, Ser. Math. 3(LXI) (1), 79–87 (2012).

    MathSciNet  Google Scholar 

  66. V. Ryazanov, U. Srebro, and E. Yakubov, Degenerate Beltrami equation and radial Q-homeomorphisms, Preprint of Department of Mathematics, University of Helsinki, 2003. 369, 2003.

    Google Scholar 

  67. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equations,” J. Anal. Math. 96, 117–150 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  68. V. Ryazanov, U. Srebro, and E. Yakubov, “The Beltrami equation and ring homeomorphisms,” Ukr. Mat. Visn. 4(1), 79–115 (2007) [Ukr. Math. Bull. 4 (1), 79–115 (2007)].

    MathSciNet  Google Scholar 

  69. V. Ryazanov, U. Srebro, and E. Yakubov, “To convergence theory for Beltrami equations,” Ukr. Mat. Visn. 5(4), 503–514 (2008) [Ukr. Math. Bull. 5 (4), 517–528 (2008)].

    MathSciNet  Google Scholar 

  70. V. Ryazanov, U. Srebro, and E. Yakubov, “On strong solutions of the Beltrami equations,” Compl. Variabl. Ellip. Equat. 55(1–3), 219–236 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  71. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of Beltrami equations,” Compl. Variabl. Ellip. Equat. 57(12), 1247–1270 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  72. S. Saks, Theory of the Integral (Dover, New York, 1964).

    MATH  Google Scholar 

  73. R. Salimov and E. Sevostyanov, “The theory of shell-based Q-mappings in geometric function theory,” Sbornik: Mathematics. 201(6), 909–934 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  74. A. Sard, “The equivalence of n-measure and Lebesguemeasure in En,” Bull. Amer. Math. Soc. 49, 758–759 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  75. E. S. Smolovaya, “Boundary behavior of ring Q-homeomorphisms in metric spaces,” Ukr. Math. Zh. 62(5), 785–793 (2010).

    Article  MathSciNet  Google Scholar 

  76. S. L. Sobolev, Applications of functional analysis in mathematical physics (Izdat. Gos. Univ., Leningrad, 1950; Amer. Math. Soc., Providence, R. I., 1963).

    Google Scholar 

  77. E. Spanier, Algebraic Topology, New York etc, McGraw-Hill, 1966.

    MATH  Google Scholar 

  78. E. M. Stein, “Editor’s note: The differentiability of functions in Rn,” Ann. Math. 113, 383–385 (1981).

    MATH  Google Scholar 

  79. V. Stepanoff, “Sur les conditions de l’existence de la differentielle totale,” Mat. Sb. 32, 511–526 (1925).

    MATH  Google Scholar 

  80. G. D. Suvorov, Families of planar topological mappings (Nauka, Novosibirsk, 1965) [in Russian].

    Google Scholar 

  81. P. M. Tamrazov, “Continuity of certain conformal invariants,” Ukrain. Mat. Zh. 18(6) (1966), 78–84 [in Russian].

    MathSciNet  MATH  Google Scholar 

  82. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229 (Springer-Verlag, Berlin etc., 1971).

    MATH  Google Scholar 

  83. J. Väisälä, “Two new characterizations for quasiconformality”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 362, 1–12 (1965).

    Google Scholar 

  84. M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math. 1319, Berlin etc., Springer-Verlag, 1988.

    MATH  Google Scholar 

  85. W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc. 126(3), 460–473 (1967).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ryazanov.

Additional information

The text was submitted by the authors in English.

About this article

Cite this article

Ryazanov, V.I., Salimov, R.R. & Sevostyanov, E.A. On convergence analysis of space homeomorphisms. Sib. Adv. Math. 23, 263–293 (2013). https://doi.org/10.3103/S1055134413040044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1055134413040044

Keywords

Navigation