Skip to main content
Log in

Friction and Ultrajet Tests of Functional Coatings

  • EXPERIMENTAL MECHANICS, DIAGNOSTICS, AND TESTING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

A new method for diagnosing functional thin-film coatings applied by ion-plasma deposition using arc installations is presented. It is shown that the methods of friction tests, although they provide quite comprehensive information about the functional properties of coatings, nevertheless, have a serious drawback associated with the duration of the testing process. Considering wide technological possibilities of methods of vacuum sputtering of coatings in terms of varying technological modes of their deposition and, accordingly, a significant number of options for properties and characteristics of samples, it seems relevant to have such methods for assessing the quality of the coating in the arsenal of a technologist that would be distinguished by efficiency, but at the same time, high reliability of the results. A method for ultrajet diagnostics of functional coatings is proposed, and the effectiveness of the results of its use is evaluated in accordance with the informative data of the “classical” friction test method (friction tests). This paper concludes that the proposed method is effective and has a wide potential for implementation in enterprises engaged in the production of instrumentation products, precision technological equipment, and machine tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Berman, D. and Krim, J., Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices, Progr. Surf. Sci., 2013, vol. 88, no. 2, pp. 171–211.  https://doi.org/10.1016/j.progsurf.2013.03.001

    Article  Google Scholar 

  2. Huq, M.Z. and Celis, J.P., Expressing wear rate in sliding contacts based on dissipated energy, Wear, 2002, vol. 252, nos. 5–6, pp. 375–383.  https://doi.org/10.1016/S0043-1648(01)00867-5

    Article  Google Scholar 

  3. Garcia, I., Fransaer, J., and Celis, J.-P., Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron sic particles, Surf. Coat. Technol., 2001, vol. 148, nos. 2–3, pp. 171–178.  https://doi.org/10.1016/S0257-8972(01)01336-6

    Article  Google Scholar 

  4. Achanta, S. and Celis, J.-P., Nanotribology of MEMS/NEMS, Fundamentals of Friction and Wear on the Nanoscale, Gnecco, E. and Meyer, E., Eds., Nanoscience and Technology, Cham: Springer, 2015, pp. 631–656.  https://doi.org/10.1007/978-3-319-10560-4_27

  5. Mohrbacher, H., Blanpain, B., Celis, J.P., Roos, J.R., Stals, L., and Van Stappen, M., Oxidational wear of TiN coatings on tool steel and nitrided tool steel in unlubricated fretting, Wear, 1995, vol. 188, nos. 1–2, pp. 130–137.  https://doi.org/10.1016/0043-1648(95)06637-3

    Article  Google Scholar 

  6. Kim, H.J., Yoo, S.S., and Kim, D.E., Nano-scale wear: A review, Int. J. Precis. Eng. Manuf., 2012, vol. 31, no. 9, pp. 1709–1718.  https://doi.org/10.1007/s12541-012-0224-y

    Article  Google Scholar 

  7. Cao, X., Shao, T., Wen, S., and Yao, Y., Micro/nanotribological and mechanical studies of TiN thin-film for mems applications, Tribol. Trans., 2004, vol. 47, no. 2, pp. 227–232.  https://doi.org/10.1080/05698190490439076

    Article  Google Scholar 

  8. Oh, C. and de Boer, M.P., Contact reliability of Pt- and TiN-coated microswitches in different environments, Mechanics of Biological Systems & Micro-and Nanomechanics, Grady, M., Minary, M., Starman, L., Hay, J., and Notbohm, J., Eds., Conference Proceedings of the Society for Experimental Mechanics Series, Cham: Springer, 2019, vol. 4, pp. 101–103. https://doi.org/10.1007/978-3-319-95062-4_22.

  9. Kim, H.J., Kim, D.E., and Kim, C.L., Real time analysis of friction/wear characteristics of metal coatings with a tribo-tester installed in an SEM, Tribol. Lubr., 2018, vol. 34, no. 6, pp. 318–324.https://doi.org/10.9725/kts.2018.34.6.318

    Article  Google Scholar 

  10. Achanta, S., Drees, D., and Celis, J.-P., Nanocoatings for tribological applications, Nanocoatings and Ultra-Thin Films: Technologies and Applications, Makhlouf, A.S.H. and Tiginyanu, I., Eds., Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publishing, 2011, pp. 355–396.  https://doi.org/10.1533/9780857094902.2.355

  11. Harun, W.S.W., Asri, R.I.M., Alias, J., Zulkifli, F.H., Kadirgama, K., Ghani, S.A.C., and Shariffud- din, J.H.M., A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials, Ceram. Int., 2018, vol. 44, no. 2, pp. 1250–1268.  https://doi.org/10.1016/j.ceramint.2017.10.162

    Article  Google Scholar 

  12. Love, C.A., Cook, R.B., Harvey, P.A., and Wood, R.J.K., Diamond like carbon coatings for potential application in biological implants—A review, Tribol. Int., 2013, vol. 63, pp. 141–150.  https://doi.org/10.1016/j.triboint.2012.09.006

    Article  Google Scholar 

  13. Hacisalihoglu, I., Yildiz, F., and Alsaran, A., Wear performance of different nitride-based coatings on plasma nitrided AISI M2 tool steel in dry and lubricated conditions, Wear, 2017, vols. 384–385, pp. 159–168.  https://doi.org/10.1016/j.wear.2017.01.117

    Article  Google Scholar 

  14. Brizuela, M., Garcia-Luis, A., Viviente, J.L., Braceras, I., and Oñate, J.I., Tribological study of lubricious DLC biocompatible coatings, J. Mater. Sci.: Mater. Med., 2002, vol. 13, pp. 1129–1133.  https://doi.org/10.1023/A:1021129718737

    Article  Google Scholar 

  15. Azim, S., Gangopadhyay, S., Mahapatra, S.S., Mittal, R.K., and Singh, R.K., Role of PVD coating on wear and surface integrity during environment-friendly micro-drilling of Ni-based superalloy, J. Cleaner Prod., 2020, vol. 272, p. 122741.  https://doi.org/10.1016/j.jclepro.2020.122741

    Article  Google Scholar 

  16. Zhang, S. and Zhu, W., TiN coating of tool steels: A review, J. Mater. Process. Technol., 1993, vol. 39, nos. 1–2, pp. 165–177.  https://doi.org/10.1016/0924-0136(93)90016-Y

    Article  Google Scholar 

  17. Cselle, T. and Barimani, A., Today’s applications and future developments of coatings for drills and rotating cutting tools, Surf. Coat. Technol., 1995, vols. 76–77, pp. 712–718.  https://doi.org/10.1016/0257-8972(96)80011-9

    Article  Google Scholar 

  18. Bandorf, R., Lüthje, H., and Staedler, T., Influencing factors on microtribology of DLC films for MEMS and microactuators, Diamond Relat. Mater., 2004, vol. 13, nos. 4–8, pp. 1491–1493.  https://doi.org/10.1016/j.diamond.2004.01.032

    Article  Google Scholar 

  19. Korlyakov, A.V., Mikhailova, O.N., and Serkov, A.V., Metallic coatings for mems structures, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 387, p. 012040.  https://doi.org/10.1088/1757-899X/387/1/012040

  20. Kim, S.H., Asay, D.B., and Dugger, M.T., Nanotribology and MEMS, Nano Today, 2007, vol. 2, no. 5, pp. 22–29.  https://doi.org/10.1016/S1748-0132(07)70140-8

    Article  Google Scholar 

  21. Radhakrishnan, G., Adams, P., Robertson, R., and Cole, R., Integration of wear-resistant titanium carbide coatings into mems fabrication processes, Tribol. Lett., 2000, vol. 8, pp. 133–137.  https://doi.org/10.1023/A:1019179000420

    Article  Google Scholar 

  22. Tabakov, V.P. and Sagitov, D.I., Tekhnologicheskie metody naneseniya iznosostoikikh pokrytii rezhushchego instrumenta (Technological Methods of Depositing Wear-Resistant Cutting Tool Coatings), Ul’yanovsk: Ul’yanovskii Gos. Tekh. Univ., 2014.

  23. Tabakov, V.P. and Chikhranov, A.V., Iznosostoikie pokrytiya rezhushchego instrumenta, rabotayushchego v usloviyakh nepreryvnogo rezaniya (Wear-Resistant Coatings of Cutting Tool Operating under Conditions of Continuous Cutting), Ul’yanovsk: Ul’yanovskii Gos. Tekh. Univ., 2007.

  24. Daugela, A. and Daugela, J., Opto-nanomechanical test instrument in mechanical characterization of DLC coated MEMS devices, Microsyst. Technol., 2020, vol. 26, pp. 3323–3329.  https://doi.org/10.1007/s00542-020-04800-1

    Article  Google Scholar 

  25. Razmi A. and Yesildal R., Microstructure and mechanical properties of TiN/TiCN/TiC multilayer thin films deposited by magnetron sputtering, Int. J. Innovative Res. Rev., 2021, vol. 5, no. 1, pp. 15–20. https://doi.org/10.20944/preprints201807.0160.v1

    Article  Google Scholar 

  26. Ponthiaux, P., Wenger, F., Drees, D., and Celis, J.-P., Electrochemical techniques for studying tribocorrosion processes, Wear, 2004, vol. 256, no. 5, pp. 459–468.  https://doi.org/10.1016/S0043-1648(03)00556-8

    Article  Google Scholar 

  27. Morón, R.C., Rodríguez-Castro, G.A., Melo-Máximo, D.V., Oseguera, J., Bahramic, A., Muhl, S., and Arzate-Vázquez, I., Multipass and reciprocating microwear study of tin based films, Surf. Coat. Technol., 2019, vol. 375, pp. 793–801.  https://doi.org/10.1016/j.surfcoat.2019.07.085

    Article  Google Scholar 

  28. Wang, L., Su, J., and Nie, X., Corrosion and tribological properties and impact fatigue behaviors of TiN-and DLC-coated stainless steels in a simulated body fluid environment, Surf. Coat. Technol., 2010, vol. 205, no. 5, pp. 1599–1605.  https://doi.org/10.1016/j.surfcoat.2010.07.111

    Article  Google Scholar 

  29. Su, Y.L., Kao, W.H., and Mao, Y.H., Tribological properties of NbTi-NX and NbTi-N12-CH coatings prepared using radio frequency magnetron sputtering and their application for micro-drills, J. Mater. Eng. Perform., 2020, vol. 29, pp. 259–277.  https://doi.org/10.1007/s11665-020-04580-9

    Article  Google Scholar 

  30. Azadi, M., Rouhaghdam, A.S., and Ahangarani, S., Properties of TiC coating by pulsed DC PACVD, J. Coat., 2013, vol. 2013, p. 712812.  https://doi.org/10.1155/2013/712812

    Article  Google Scholar 

  31. Khadem, M. and Penkov, O.V., Yang, H.-K., and Kim, D.-E., Tribology of multilayer coatings for wear reduction: A review, Friction, 2017, vol. 5, pp. 248–262.  https://doi.org/10.1007/s40544-017-0181-7

    Article  Google Scholar 

  32. Azadi, M., Rouhaghdam, A.S., and Ahangarani, S., Mechanical behavior of TiN/TiC-n multilayer coatings and Ti(C,N) multicomponent coatings produced by PACVD, Strength Mater., 2016, vol. 48, pp. 279–289.  https://doi.org/10.1007/s11223-016-9763-2

    Article  Google Scholar 

  33. Bosansky, M., Gondar, E., Svec, P., Toth, F., and Protasov, R., A study of wear in thin coatings applied to convex-concave gearings, Lubricants, 2020, vol. 8, no. 5, p. 56.  https://doi.org/10.3390/lubricants8050056

    Article  Google Scholar 

  34. Kragel’skii, I.V. and Alisin, V.V., Trenie, iznashivanie i smazka (Friction, Wear, and Lubrication), Moscow: Mashinostroenie, 1978, vol. 1.

  35. Abashin, M.I., Galinovskii, A.L., and Sgibnev, A.V., Technological support procedures for express determination of quality parameters of superficial layer material of the space-rocket products, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 2013, no. 3, pp. 73–79.

  36. Sudnik, L.V., Galinovskii, A.L., Kolpakov, V.I., Khafizov, M.V., Mulyar, S.G., and Saifutdinov, R.R., Formation and ultra-jet diagnostics sintered powder of nanosized boehmite, Nanoinzheneriya, 2013, no. 1, pp. 26–31.

  37. Barzov, A.A. and Galinovskii, A.L., Tekhnologii ul’trastruinoi obrabotki i diagnostiki materialov (Technologies of Ultrajet Processing and Diagnostics), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Galinovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Sh. Galyaltdinov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galinovskii, L., Provatorov, A.S., Velichko, S.A. et al. Friction and Ultrajet Tests of Functional Coatings. J. Mach. Manuf. Reliab. 51, 864–871 (2022). https://doi.org/10.3103/S1052618822080076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618822080076

Keywords:

Navigation