Skip to main content
Log in

Inhibitors: Classification and Mechanism of Corrosion Protection (Literature Review)

  • Published:
Steel in Translation Aims and scope

Abstract

This work considers corrosion processes as one of the main causes of destruction of materials and structures. Anti-corrosion protection is of great importance in ensuring the maximum service life of structural elements. Today, various methods of anti-corrosion protection are used, including coating with materials containing corrosion inhibitors. The article provides information about corrosion inhibitors. A classification is given by the inhibition mechanism: passivation (anodic protection) and cathodic protection; classification by the inhibitor nature, and the main groups of inhibitors are described. The conditions for the adsorption of inhibitory components onto a metal surface are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Arsenault, J., Backscatter Computer Tomography Development Overview, Inversa Systems, 2012, vol. 1.

    Google Scholar 

  2. Alwash, A.H., Fadhil, D.H., Ali, A., Abdul-Hameed, F., and Yousif, E., Inhibitive effect of atenolol on the corrosion of zinc in hydrochloric acid, Rasayan J. Chem., 2017, vol. 10, no. 3, pp. 922–928. https://doi.org/10.7324/RJC.2017.1031632

    Article  CAS  Google Scholar 

  3. Bethencourt, M., Botana, F.J., Calvino, J.J., Marcos, M., and Rodríguez-Chacón, M.A., Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review, Corros. Sci., 1998, vol. 40, no. 11, pp. 1803–1819. https://doi.org/10.1016/s0010-938x(98)00077-8

    Article  CAS  Google Scholar 

  4. Antipov, V.V., Duyunova, V.A., Oglodkov, M.S., Fomina, M.A., Frantsuzova, T.P., and Kozlov, I.A., 90‑year practice of anticorrosive protection, Tr. VIAM, 2022, no. 6, p. 10. https://doi.org/10.18577/2307-6046-2022-0-6-108-126

  5. Bazyleva, O.A., Arginbaeva, E.G., and Lutskaya, S.A., Ways of increasing corrosion resistance of superalloys (review), Tr. VIAM, 2018, no. 4, p. 1. https://doi.org/10.18577/2307-6046-2018-0-4-3-8

  6. Redkina, G.V., Sergienko, A.S., and Kuznetsov, Yu.I., Hydrophobic and anticorrosion properties of thin phosphonate–siloxane films formed on a laser textured zinc surface, Int. J. Corros. Scale Inhib., 2020, vol. 9, no. 4, pp. 1550–1563. https://doi.org/10.17675/2305-6894-2020-9-4-23

    Article  CAS  Google Scholar 

  7. Kuznetsov, Yu.I., Triazoles as a class of multifunctional corrosion inhibitors. Review. Part II. 1,2,3-Benzotriazole and its derivatives. Iron and steels, Int. J. Corros. Scale Inhib., 2020, vol. 1, no. 3, pp. 780–811. https://doi.org/10.17675/2305-6894-2020-9-3-1

    Article  CAS  Google Scholar 

  8. Kablov, E.N., Materials for Buran spaceship–Innovative solutions for formation of the sixth technological mode, Aviats. Mater. Tekhnol., 2020, no. S2, pp. 3–9.

  9. Rossina, N.G., Popov, N.A., and Zhilyakova, M.A., Korroziya i zashchita metallov (Ch. 1): Uchebno-metodicheskoe posobie (Corrosion and Protection of Metals (Part 1): Training and Methodological Manual), Ekaterinburg: Izd-vo Ural’skogo Univ., 2019, pp. 3–4.

  10. Bryk, Ya.A., Eliseev, O.A., and Smirnov, D.N., Corrosion protection of magnesium alloys polysulphide sealants, Tr. VIAM, 2017, no. 10, p. 10. https://doi.org/10.18577/2307-6046-2017-0-10-10-10

  11. Krivilev, M.D., Application of some inhibitors for improving the corrosion resistance of ceramic coatings deposited on non-alloy steel by short-pulse laser treatment, Int. J. Corros. Scale Inhib., 2020, vol. 9, no. 1, pp. 44–55. https://doi.org/10.17675/2305-6894-2020-9-1-3

    Article  CAS  Google Scholar 

  12. Kablov, E.N., Startsev, O.V., and Medvedev, I.M., Review of international experience on corrosion and corrosion protection, Aviats. Mater. Tekhnol., 2015, no. 2, pp. 76–87. https://doi.org/10.18577/2071-9140-2015-0-2-76-87

  13. Reshetnikov, S.M., Pisareva, T.A., Kharanzhevsky, E.V., Gil’mutdinov, F.Z., and Borisova, E.M., Effect of laser treatment of unalloyed steel on the efficiency of benzotriazole as a corrosion inhibitor in a neutral medium, Int. J. Corros. Scale Inhib., 2020, vol. 9, no. 3, pp. 1113–1120. https://doi.org/10.17675/2305-6894-2020-9-3-21

    Article  CAS  Google Scholar 

  14. Bryk, Ya.A., Smirnov, D.N., and Avdyushkina, L.I., Main directions in the field of research and application of inhibitor profilactic materials for protecting against corrosion damage, Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii Fundamental’nye i prikladnye issledovaniya v oblasti uplotnitel’nykh, germetiziruyushchikh i ogneteplozashchitnykh materialov (Proc. All-Russian Sci. Tech. Conf. Fundamental and Applied Research in the Field of Sealing, Sealing and Fireproofing Materials), Pavlyuk, B.F., Bryk, Ya.A., Chaikun, A.M., Shein, E.A., and Zakrzhevskaya, M.S., Eds., Moscow: VIAM, 2019, pp. 24–34.

  15. Kablov, E.N. and Startsev, V.O., Climatic aging of aviation polymer composite materials: I. Influence of significant factors, Russ. Metall., 2020, vol. 2020, no. 4, pp. 364–372. https://doi.org/10.1134/S0036029520040102

    Article  Google Scholar 

  16. Zavarzin, S.V., Oglodkov, M.S., Chesnokov, D.V., and Kozlov, I.A., Hot corrosion and protection of materials of gas turbine engines (review), Tr. VIAM, no. 3, pp. 121–134. https://doi.org/10.18577/2307-6046-2022-0-3-121-134

  17. Fiaud, C., Theory and practice of vapour phase inhibitors, A Working Party Report on Corrosion Inhibitors, London: The Institute of Materials, 1994, pp. 1–11.

    Google Scholar 

  18. Kablov, E.N., Semenova, L.V., Es’kov, A.A., and Lebedeva, T.A., An integrated system of coatings for protection of metal, polymer composite materials, as well as their contact connections from exposure to corrosive factors, Lakokrasochnye Mater. Ikh Primenenie, 2016, no. 6, pp. 32–35.

  19. Eliseev, O.A., Bryk, Ya.A., and Smirnov, D.N., Polysulfide sealants modification by corrosion inhibitors, Aviats. Mater. Tekhnol., no. S2, pp. 15–21. https://doi.org/10.18577/2071-9140-2016-0-S2-15-21

  20. Hackerman, N. and Snaveley, E.S., Inhibitors, Corrosion Basics, Brasunas, A.S., Ed., Houston, Texas: NACE Int., 1984, pp. 127–146.

    Google Scholar 

  21. Sastri, V.S., Roberge, P.R., and Perumareddi, J.R., Selection of inhibitors based on theoretical considerations, Material Performance: Sulphur and Energy, Montreal: Canadian Inst. of Mining, Metallurgy and Petroleum, 1992, pp. 45–54.

    Google Scholar 

  22. Khmeleva, K.M., Kozlov, I.A., Nikitin, Ya.Yu., and Nikiforov, A.A., Modern trends of protective galvanic coatings working at high temperatures (review), Tr. VIAM, 2020, no. 12, pp. 75–86. https://doi.org/10.18577/2307-6046-2020-0-12-75-86

  23. Rozenfel’d, I.L., Ingibitory korrozii (Corrosion Inhibitors), Moscow: Khimiya, 1977.

  24. Andreev, I.N., Novosel’skii, I.M., and Khakimov, M.G., Kinetic theory of the passivation of anodically dissolving metals. Part 1. Stationary polarization curves in the case of the formation of a single oxide, Elektrokhimiya, 1971, vol. 7, no. 7, pp. 1004–1008.

    CAS  Google Scholar 

  25. Mezhikovskii, S.M., Arinshtein, A.E., and Deberdeev, R.Ya., Oligomernoe sostoyanie veshchestva (Oligomeric State of Matter), Moscow: Nauka, 2005.

  26. Galyamov, I.I., Galimov, M.R., and Andriyanov, O.P., Modeling of initial stage of protective layer formation of corrosion inhibitor by application of molecular dynamics method, Avtom., Telemekhanizatsiya Svyaz’ Neftyanoi Prom-sti, 2011, no. 9, pp. 44–45.

  27. Entsiklopedicheskii slovar’ po metallurgii (Encyclopedic Dictionary of Metallurgy), Lyakishev, N.P., Ed., Moscow: Intermet Inzhiniring, 2000.

    Google Scholar 

  28. Kornysheva, I.S., Volkova, E.F., Goncharenko, E.S., and Mukhina, I.Yu., Application perspectives of magnesium and casting aluminium alloys, Aviats. Mater. Tekhnol., 2012, no. S, pp. 212–222.

  29. Grinevich, A.V., Lutsenko, A.N., and Karimova, S.A., The study of residual fatigue life of aluminum alloy V95pchT1 after exposure to a variety of conditions, Vopr. Materialoved., 2013, no. 2, pp. 118–122.

  30. Khokhlatova, L.B., Kolobnev, N.I., Antipov, V.V., Karimova, S.A., Rudakov, A.G., and Oglodkov, M.S., Effect of corrosion medium on the fatigue crack growth rate in aluminium alloys, Tr. VIAM, 2013, no. 3, p. 5.

  31. Sinyavskii, V.S., New trends in corrosion science, Tekhnol. Legkikh Splavov, 2014, no. 1, pp. 113–117.

  32. Oleinik, S.V., Rudnev, V.S., Kuzenkov, Yu.A., Yarovaya, T.P., Trubetskaya, L.F., and Nedozorov, P.M., Corrosion inhibitors in PEO-coatings on aluminum alloys, Prot. Met. Phys. Chem. Surf., 2013, vol. 50, no. 7, pp. 893–897. https://doi.org/10.1134/s2070205114070120

    Article  Google Scholar 

  33. Vigdorovich, V.I. and Strel’nikova, K.O., Criteria to assess the protective effectiveness of corrosion inhibitors, Kondensirovannye Sredy Mezhfaznye Granitsy, 2011, vol. 13, no. 1, pp. 24–28.

    CAS  Google Scholar 

  34. Beloglazov, G.S. and Beloglazov, S.M., Protection of steel from corrosion and hydrogen absorption by organic inhibitors: Experimental and quantum-chemical studies, Vestn. Baltiiskogo Fed. Univ. I. Kanta, 2013, no. 1, pp. 30–38.

  35. Medvedeva, M.L., Korroziya i zashita oborudovaniya pri pererabotke nefti i gaza (Corrosion and Protection of Oil and Gas Processing Equipment), Moscow: Neft’ i Gaz, 2005.

  36. Bystrova, O.N., Mathematical description of the mechanism of iron corrosion in solutions with H2S, Vestn. Kazanskogo Tekhnologicheskogo Univ., 2012, vol. 15, no. 9, pp. 237–242.

    Google Scholar 

  37. Plotnikova, M.D., Panteleeva, M.I., and Shein, A.B., Corrosion protection of low-carbon steel by inhibitors Flek series, Vestn. Tambovsk. Univ. Ser.: Estestv. Tekh. Nauki, 2013, vol. 18, no. 5, pp. 2309–2313.

    Google Scholar 

  38. Ostapenko, G.I., Glukhov, P.A., Bunev, A.S., Rybalko, E.A., and Skachkov, A.V., Investigation product of cyclohexanon condensation and amination as surfactant on air-hydrochloric acid interface, Vektor Nauki Tol’yattinskogo Gos. Univ., 2013, no. 1, pp. 64–67.

  39. Prokhodtseva, L.V., Filonova, E.V., Naprienko, S.A., and Moiseeva, N.S., Study of developing the fracture process regularities of VT41 alloy under the cyclic loading conditions, Aviats. Mater. Tekhnol., 2020, no. S, pp. 407–412.

  40. Kisljakov, Ju.V., Osipov, P.A., Smirnova, V.K., and Solov’ev, M.K., Technology of chemical treatment of articles made of titanium or its alloys, RF Patent 2196848, 2003.

  41. Sinyavskii, V.S., Val’kov, V.D., and Kalinin, V.D., Korroziya i zashchita alyuminievykh splavov (Corrosion and Protection of Aluminum Alloys), Moscow: Metallurgiya, 1986.

  42. Khodyrev, A.I., Mokshaev, A.N., Manyachenko, A.V., Yagodkin, V.A., and Rebrov, I.Yu., Analysis of technologies for inhibitor protection of gas pipelines containing hydrogen sulfide gas, Territoriya Neftegaz, 2010, no. 5, pp. 32–37.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Makushchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Kolemesin

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makushchenko, I.S., Smirnov, D.N. & Kozlov, I.A. Inhibitors: Classification and Mechanism of Corrosion Protection (Literature Review). Steel Transl. 53, 1205–1210 (2023). https://doi.org/10.3103/S0967091224700128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091224700128

Keywords:

Navigation