Skip to main content
Log in

Changes in Grain Shape and Dislocation Density of Carbon Steel during Pendulum SPD

  • Published:
Steel in Translation Aims and scope

Abstract

The results of experimental studies to determine the influence of the parameters of pendulum surface plastic deformation (SPD) on the distortion of grains of carbon steel 45 are presented. It has been established that after pendulum SPD, the grains in the hardening zone change in size and shape, which affects the increase in microhardness. The dislocation density of steel 45 after SPD was also determined, which can be used to judge the increase in the strength characteristics of hardened parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Laouar, L., Hamadache, H., Saad, S., Bouchelaghem, A., and Mekhilef, S., Mechanical surface treatment of steel-Optimization parameters of regime, Phys. Procedia, 2009, vol. 2, no. 3, pp. 1213–1221. https://doi.org/10.1016/j.phpro.2009.11.084

    Article  ADS  Google Scholar 

  2. Gorbunov, A.V. and Gorbunov, V.F., Substantiation of the strengthening depth of flexible shafts at surface plastic deformation by centripetal roller, Vestn. Irkuts. Gos. Tekh. Univ., 2012, no. 9, pp. 29–33.

  3. Zhang, Z., Theoretical prediction of cross-sectional deformation of circular thin-walled tube in large elastic–plastic deformation stage under lateral compression, Thin-Walled Struct., 2022, vol. 180, p. 109957. https://doi.org/10.1016/j.tws.2022.109957

    Article  Google Scholar 

  4. Biswas, S., Alavi, S.H., Sedai, B., Blum, F.D., and Harimkar, S.P., Effect of ultrasonic vibration-assisted laser surface melting and texturing of Ti–6Al–4V ELI alloy on surface properties, J. Mater. Sci. Technol., 2019, vol. 35, no. 2, pp. 295–302. https://doi.org/10.1016/j.jmst.2018.09.057

    Article  CAS  Google Scholar 

  5. Li, Y.B., Zhang, Q.X., Qi, L., and David, S.A., Improving austenitic stainless steel resistance spot weld quality using external magnetic field, Sci. Technol. Weld. Joining, 2018, vol. 23, no. 7, pp. 619–627. https://doi.org/10.1080/13621718.2018.1443997

    Article  CAS  Google Scholar 

  6. Di Giovanni, C., Biro, E., and Zhou, N.Y., Impact of liquid metal embrittlement cracks on resistance spot weld static strength, Sci. Technol. Weld. Joining, 2019, vol. 24, no. 3, pp. 218–224. https://doi.org/10.1080/13621718.2018.1518363

    Article  CAS  Google Scholar 

  7. Grzesik, W., Rech, J., and Żak, K., High-precision finishing hard steel surfaces using cutting, abrasive and burnishing operations, Procedia Manuf., 2015, vol. 1, no. 9, pp. 619–627. https://doi.org/10.1016/j.promfg.2015.09.048

    Article  Google Scholar 

  8. Chen, X.-S., Li, Q., and Fei, Sh.-M., Constrained model predictive control in ball mill grinding process, Powder Technol., 2008, vol. 186, no. 1, pp. 31–39. https://doi.org/10.1016/j.powtec.2007.10.026

    Article  CAS  Google Scholar 

  9. Le Roux, J.D. and Craig, I.K., Requirements for estimating the volume of rocks and balls in a grinding mill, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 1169–1174. https://doi.org/10.1016/j.ifacol.2017.08.403

    Article  Google Scholar 

  10. Mitrofanova, K.S., Study of the quality of surface layer of steel 45 after surface plastic deformation with a multiradius roller, Sbornik trudov konferentsii Innovatsii v mashinostroenii (Proc. Conf. Innovations in Machinery Manufacture), 2019, pp. 639–787.

  11. Zaides, S.A., Spravochnik po protsessam poverkhnostnogo plasticheskogo deformirovaniya (Reference Book on Processes of Surface Plastic Deformation), Irkutsk: Irkutsk. Nats. Issled. Tekh. Univ., 2021.

  12. Kyong, N.K., Improving the quality of low-stiff shafts by surface plastic deformation under constrained conditions, Cand. Sci. (Eng.) Dissertation, Irkutsk: Irkutsk National Research Tech. Univ., 2018.

  13. Yaman, N., Sunay, N., Kaya, M., and Kaynak, Yu., Enhancing surface integrity of additively manufactured inconel 718 by roller burnishing process, Procedia CIRP, 2022, vol. 108, pp. 681–686. https://doi.org/10.1016/j.procir.2022.03.106

    Article  Google Scholar 

  14. Frihat, M.H., Al Quran, F.M.F., and Al-Odat, M.Q., Experimental investigation of the influence of burnishing parameters on surface roughness and hardness of brass alloy, J Mater. Sci. Eng., 2015, vol. 5, no. 216, pp. 2169–0022. https://doi.org/10.4172/2169-0022.1000216

    Article  CAS  Google Scholar 

  15. Ezhelev, A.V., Bobrovskii, I.N., and Luk’yanov, A.A., Analysis of the surface plastic deformation treatment methods, Fundam. Issled., 2012, no. 6-3, pp. 642–646.

  16. Kotenok, V.I. and Podobedov, S.I., Energy-efficient design of rolls for ball-rolling mills, Metallurgist, Metallurgist, 2001, vol. 45, no. 9/10, pp. 363–367. https://doi.org/10.1023/a:1017920006038

    Article  Google Scholar 

  17. Tomczak, J., Pater, Z., and Bulzak, T., The flat wedge rolling mill for forming balls from heads of scrap railway rails, Arch. Metall. Mater., 2018, vol. 63, no. 1, pp. 5–12. https://doi.org/10.24425/118901

    Article  CAS  Google Scholar 

  18. Chumachenko, E.N., Aksenov, S.A., and Logashina, I.V., Mathematical modeling and energy conservation for rolling in passes, Metallurgist, 2010, vol. 54, nos. 7–8, pp. 498–504. https://doi.org/10.1007/s11015-010-9330-1

    Article  Google Scholar 

  19. Zaides, S.A. and Quan, H.M., Method of surface plastic deformation of the outer surface of an element in form of body of revolution, RF Patent 2757643, Byull. Izobret., 2021, no. 29.

  20. Zaides, S.A. and Quan, H.M., Pendulum surface plastic deformation of cylindrical blanks, Steel Transl., 2022, vol. 52, no. 5, pp. 487–494. https://doi.org/10.3103/S0967091222050114

    Article  Google Scholar 

  21. Prikhod’ko, V.M., Petrova, L.G., and Chudina, O.V., Metallofizicheskie osnovy razrabotki uprochnyayushchikh tekhnologii (Metal Physics Foundations in Developing Strengthening Technologies), Moscow: Mashinostroenie, 2003.

  22. Drapkin, B.M., Kononenko, V.K., and Bez’’yazychnyi, V.F., Svoistva splavov v ekstremal’nom sostoyanii (Properties of Alloys in Extreme Condition), Moscow: Mashinostroenie, 2004.

  23. Sulima, A.M., Shulov, V.A., and Yagodkin, Yu.D., Poverkhnostnyi sloi i ekspluatatsionnye svoistva detalei mashin (Surface Layer and Operation Properties of Machine Elements), Moscow: Mashinostroenie, 1988, pp. 146–149.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Min Quan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by K. Gumerov

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaides, S.A., Ho Min Quan Changes in Grain Shape and Dislocation Density of Carbon Steel during Pendulum SPD. Steel Transl. 53, 1056–1063 (2023). https://doi.org/10.3103/S0967091223110372

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223110372

Keywords:

Navigation