Skip to main content
Log in

Construction of Models for Predicting the Microstructure of Steels after Heat Treatment Using Machine Learning Methods

  • Published:
Steel in Translation Aims and scope

Abstract

Process of building machine learning models to predict microstructures of pipe steels after continuous cooling involves the collection and preparation of data, the source of which is thermokinetic diagrams of supercooled austenite decomposition. Statistics of intermediate and final data, as well as algorithms for their transformation are given. Evaluations of machine learning models for selected microstructures are considered. A method for generating data under small sample conditions and introducing an evaluative feature of grain size are proposed. Models were validated and the significance of features was interpreted. The practical use of models for constructing thermokinetic diagrams of austenite decomposition and analysis of modeling results is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Urtsev, V.N., Shmakov, A.V., Urtsev, N.V., Mokshin, E.D., Khabibulin, D.M., Degtyarev, V.N., Stekanov, P.A., Gornostyrev, Yu.N., Lobanov, M.L., Platov, S.I., and Maslennikov, K.B., Phenomenological model of austenite decomposition kinetics in low-carbon low-alloy high-strength steels, Steel Transl., 2020, vol. 50, no. 7, pp. 496–500. https://doi.org/10.3103/s0967091220070153

    Article  Google Scholar 

  2. Xie, Q., Suvarna, M., Li, J., Zhu, X., Cai, J., and Wang, X., Online prediction of mechanical properties of hot rolled steel plate using machine learning, Mater. Des., 2021, vol. 197, p. 109201. https://doi.org/10.1016/j.matdes.2020.109201

    Article  CAS  Google Scholar 

  3. Bhattacharyya, T., Singh, S.B., Dey, S.S., Bhattacharyya, S., Bleck, W., and Bhattacharjee, D., Microstructural prediction through artificial neural network (ANN) for development of transformation induced plasticity (TRIP) aided steel, Mater. Sci. Eng., A, 2013, vol. 565, pp. 148–157. https://doi.org/10.1016/j.msea.2012.11.110

    Article  CAS  Google Scholar 

  4. Isasti, N., García-Riesco, P.M., Jorge-Badiola, D., Taheri, M., López, B., and Uranga, P., Modeling of CCT diagrams and ferrite grain size prediction in low carbon Nb–Mo microalloyed steels, ISIJ Int., 2015, vol. 55, no. 9, pp. 1963–1972. https://doi.org/10.2355/isijinternational.ISIJINT-2015-036

    Article  CAS  Google Scholar 

  5. Jeon, J., Seo, N., Jung, J.-G., Kim, H.-S., Son, S.B., and Lee, S.-J., Prediction and mechanism explain of austenite-grain growth during reheating of alloy steel using XAI, J. Mater. Res. Technol., 2022, vol. 21, pp. 1408–1418. https://doi.org/10.1016/j.jmrt.2022.09.119

    Article  CAS  Google Scholar 

  6. Umemoto, M., Nishioka, N., and Tamura, I., Prediction of hardenability from isothermal transformation diagrams, J. Heat Treat., 1981, vol. 2, no. 2, pp. 130–138. https://doi.org/10.1007/bf02833229

    Article  Google Scholar 

  7. Umemoto, M., Komatsubara, N., and Tamura, I., Prediction of hardenability effects from isothermal transformation kinetics, J. Heat Treat., 1980, vol. 1, no. 3, pp. 57–64. https://doi.org/10.1007/bf02833039

    Article  CAS  Google Scholar 

  8. Lee, J.-Yo., Kim, M., and Lee, Yo.-K., Design of high strength medium-Mn steel using machine learning, Mater. Sci. Eng., A, 2022, vol. 843, p. 143148. https://doi.org/10.1016/j.msea.2022.143148

    Article  CAS  Google Scholar 

  9. Cui, C., Cao, G., Li, X., Gao, Z., Liu, J., and Liu, Z., A strategy combining machine learning and physical metallurgical principles to predict mechanical properties for hot rolled Ti micro-alloyed steels, J. Mater. Process. Technol., 2023, vol. 311, p. 117810. https://doi.org/10.1016/j.jmatprotec.2022.117810

    Article  CAS  Google Scholar 

  10. Lu, Q., Liu, S., Li, W., and Jin, X., Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels, Mater. Des., 2020, vol. 192, p. 108696. https://doi.org/10.1016/j.matdes.2020.108696

    Article  Google Scholar 

  11. Zhang, Yi. and Ling, C., A strategy to apply machine learning to small datasets in materials science, npj Comput. Mater., 2018, vol. 4, no. 1, p. 25. https://doi.org/10.1038/s41524-018-0081-z

    Article  CAS  Google Scholar 

  12. Lancaster, F., Metallurgy of Welding, Abington, Pa.: Abington Publishing, 1999.

    Book  Google Scholar 

  13. Gafarov, M., Okishev, K., and Makovetskiy, A., Predicting the hardness of pipe steels using machine learning methods, 2022 Int. Conf. on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 2022, IEEE, 2022, pp. 1051–1056. https://doi.org/10.1109/icieam54945.2022.9787169

  14. Okishev, K.Yu., Gafarov, M.F., Pavlova, K.P., et al., Construction and analysis of forecasting models of yield strengths of pipe steels after heat treatment using machine learning methods, Kuznechno-Shtampovochnoe Proizvod. Obrab. Mater. Davleniem, 2022, no. 10, pp. 10–17.

  15. Popova, L.E. and Popov, A.A., Diagrammy austenitnogo prevrashcheniya v stalyakh i beta-rastvora v splavakh titana (Diagrams of Austenite Transformation in Steels and Beta-Solution in Titanium Alloys), Moscow: Metallurgiya, 1991.

  16. Vander Voort, G.F., Atlas of Time-Temperature Diagrams for Irons and Steels, Materials Park, Ohio: ASM Int., 1991.

    Google Scholar 

  17. Atlas zur Wärmebehandlung der Stähle, Düsseldorf: Stahleisen, 1954, vol. 2.

  18. Krauss, G., Steels: Processing, Structure, and Performance, Materials Park, Ohio: ASM Int., 2005.

    Google Scholar 

  19. Okishev, K.Yu., Calculation of ttt diagrams of isothermal austenite decomposition in structural steels, Vestn. Permsk. Nats.-Issled. Univ., Mashinostr., Materialoved., 2020, vol. 22, no. 2, pp. 82–89. https://doi.org/10.15593/2224-9877/2020.2.10

    Article  Google Scholar 

  20. Maaten, L.J.P. and Hinton, G.E., Visualizing high-dimensional data using t-SNE, J. Mach. Learn. Res., 2008, vol. 9, pp. 2579–2605.

    Google Scholar 

  21. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., and Xu, X., DBSCAN Revisited, Revisited: Why and how you should (still) use DBSCAN, ACM Trans. Database Syst., 2017, vol. 42, no. 3, p. 19. https://doi.org/10.1145/3068335

    Article  MathSciNet  Google Scholar 

  22. JMatPro: Software for modeling multicomponent steels and alloys. http://jmatpro.ru/.

  23. JMatPro demo version. http://jmatpro.ru/#article.

  24. Guo, Z., Saunders, N., Miodownik, P., and Schillé, J., Modelling phase transformations and material properties critical to the prediction of distortion during the heat treatment of steels, Int. J. Microstructure Mater. Properties, 2009, vol. 4, no. 2, pp. 187–195. https://doi.org/10.1504/IJMMP.2009.028632

    Article  CAS  Google Scholar 

  25. Cahn, J.W., The kinetics of grain boundary nucleated reactions, Acta Metall., 1956, vol. 4, no. 5, pp. 449–459. https://doi.org/10.1016/0001-6160(56)90041-4

    Article  CAS  Google Scholar 

  26. Ojala, M. and Garriga, G.C., Permutation tests for studying classifier performance, 2009 Ninth IEEE Int. Conf. on Data Mining, Miami Beach, Fla., 2010, IEEE, 2010, pp. 1833–1863. https://doi.org/10.1109/icdm.2009.108

  27. Machine learning in Python. https://scikit-learn.org/stable/.

  28. LightGBM: gradient boosting framework that uses tree based learning algorithms. https://lightgbm.readthedocs.io/en/v3.3.2/.

  29. Supervised learning. https://scikit-learn.org/stable/supervised_learning.html#supervised-learning.

  30. GridSearchCV: Exhaustive search over specified parameter values for an estimator. https://scikit-learn.org/ stable/modules/generated/sklearn.model_selection.GridSearchCV.html.

  31. https://scikitlearn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html.

  32. Gmurman, V.E., Rukovodstvo k resheniyu zadach po teorii veroyatnostei i matematicheskoi statistike (Guidelines to Solving Problems of the Probability Theory and Mathematical Statistics), Moscow: Vysshaya Shkola, 1979.

  33. Efron, B., Bootstrap methods: Another look at the jackknife, Ann. Stat., 1979, vol. 7, no. 1, pp. 1–26. https://doi.org/10.1214/aos/1176344552

    Article  MathSciNet  Google Scholar 

  34. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, pp. 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  35. GOST (State Standard) 5639–82: Steels and alloys. Methods for detection and determination of grain size, 1983.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Gafarov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gafarov, M.F., Okishev, K.Y., Makovetskiy, A.N. et al. Construction of Models for Predicting the Microstructure of Steels after Heat Treatment Using Machine Learning Methods. Steel Transl. 53, 1120–1129 (2023). https://doi.org/10.3103/S0967091223110104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223110104

Keywords:

Navigation