Skip to main content
Log in

New Generation High-Strength Cold-Resistant Steels: History, Current Status and Development Prospects

  • Published:
Steel in Translation Aims and scope

Abstract

The history, production experience and the current state of new generation high-strength cold-resistant steels in Russia are presented. The relevance of the development and mastering the production of high-strength sheet metal, which is strategically important for the Russian Federation, is considered, its main types are listed according to their intended end-use. The paper highlights the main leading Russian scientific schools, research institutes, scientific and technical organizations involved in the creation and study of the properties of this type of rolled products. Large Russian metallurgical enterprises producing cold-resistant high-strength sheet products are noted, foreign grades of cold-resistant high-strength steels and their leading world manufacturers are listed. Prospects and strategic directions for further development of research in the field of new compositions of high-strength cold-resistant steels are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. 1. Integrated project “Innovative process for the production of import-substituting nanostructured sheet products with a unique set of mechanical properties” (2014–2016) (contract 02.G25.31.0105). 2. Comprehensive project “Development and implementation of an innovative process for the production of ultra-cold-resistant nanostructured sheet products for import substitution of materials, including cryogenic materials, used in conditions of ultra-low critical temperatures, increased corrosivity, as well as in the Arctic latitudes” (2017–2019) (contract 03. G25.31.0235).

REFERENCES

  1. Filippov, G.A., Morozov, Yu.D., Shlyamnev, A.P., and Efron, L.I., Structural materials of the future, Stal’, 2004, no. 8, pp. 69–78.

  2. Aksenova, K.V., Barkov, L.A., Baryshnikov, M.P., et al., Innovatsionnye metallicheskie materialy (Innovative Metallic Materials), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ. im. G.I. Nosova, 2016.

  3. Khlusova, E. and Sych, O., Creation of cold-resistant structural materials for the arctic. background story, application experience and present-day situation, Innovatsii, 2018, no. 11, pp. 85–92.

  4. Suleimanov, E.V., Khimicheskoe Materialovedenie. Ch. 1. Sovremennye metody issledovaniya novykh materialov elektroniki i optoelektroniki dlya informatsionno-telekommunikatsionnykh sistem (Chemical Materials Science. Part 1. Modern Methods for Studying New Materials of Electronics and Optoelectronics for Information-Telecommunication Systems), Nizhny Novgorod: Nizhegorodsk. Gos. Univ., 2006.

  5. Sych, O.V., Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 1: Principles of alloying and requirements for sheet metal structure, Vopr. Materialoved., 2018, no. 3, pp. 22–47. https://doi.org/10.22349/1994-6716-2018-95-3-22-47

  6. Sleptsov, O.I., Ermakov, B.S., Moskvitin, S.G., Petrov, P., and Karginova, V.V., Prospects of creating high-strength, cold-resistant steels from naturally alloyed ore of the Lensky Ore Field, Khim. Tekhnol., 2010, vol. 11, no. 12, pp. 755–760.

    CAS  Google Scholar 

  7. Gol’dshtein, Ya.E. and Mizin, V.G., Modifitsirovanie i mikrolegirovanie chuguna i stali (Modification and Microalloying of Cast Iron and Steel), Moscow: Metallurgiya, 1986.

  8. Braun, M.P., Mikrolegirovanie stali (Microalloying of Steel), Kiev: Naukova Dumka, 1982.

  9. Odesskii, P.D., Smirnov, L.A., and Kulik, D.V., Mikrolegirovannye stali dlya severnykh i unikal’nykh metallicheskikh konstruktsii (Microalloying of Steel for North and Unique Metallic Structures), Moscow: Intermet Inzhiniring, 2006.

  10. Kharlashin, P.S., Ershov, G.S., and Gavrilyuk, G.V., Microalloying and modification of steels and alloys, Vestn. Priazovskogo Gos. Tekh. Univ. Ser.: Tekh. Nauki, 2015, no. 30, pp. 24–29.

  11. Kupriyanova, O.A., On the question of classification of cold-resistant materials, Chern. Metall. Byull. Nauchn.-Tekh. Ekon. Inf., 2021, vol. 77, no. 12, pp. 1279–1290.

    Google Scholar 

  12. Energy Strategy of the Russian Federation until 2035. https://minenergo.gov.ru/sites/default/files/documents/ 11/10/1920/document-66308.pdf?ysclid=l40010stf9. Cited December 8, 2022.

  13. Ermakov, B.S., Sleptsov, O.I., and Petrov, P.P., Prospects of development of metallurgy in Yakutia in relation to creation of new generations of northern steels, Nauka Obraz., 2015, no. 3, pp. 59–63.

  14. Simbukhov, I.A., Metal production made of high-strength, seismic-resistant steels of new generation for Arctic shelf projects, Mezhdistsiplinarnyi molodezhnyi nauchnyi forum Novye materialy. Dni nauki (Interdisciplinary Young Scientists Forum on New Materials: Days of Science), St. Petersburg, 2015, pp. 192–194.

  15. Oryshchenko, A.S. and Malyshevskii, V.A., Structural materials for reclamation of the Arctic shelf and the Northern Sea Route, Transp. Strategiya XXI vek, 2015, no. 29, pp. 13–15.

  16. Malyshevskii, V.A., Semicheva, T.G., and Khlusova, E.I., New hull steels for shipbuilding, Sudostroenie, 2004, no. 4, pp. 107–110.

  17. Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., and Khlusova, E.I., Cold-resistant steels for technical tools of reclamation of the Arctic shelf, Vopr. Materialoved., 2009, no. 3, pp. 108–126.

  18. Oryshchenko, A.S. and Golosienko, S.A., New generation of high-strength shipbuilding hull steels, Sudostroenie, 2013, no. 4, pp. 73–76.

  19. Sych, O.V., Khlusova, E.I., Golubeva, M.V., et al., Development and introduction of the production technology of cold-resistant metallic rolled products for icebreaker fleet, naval, and engineering equipment operated in the Arctic, Sbornik laureatov Mezhdunarodnogo konkursa nauchnykh, nauchno-tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie i osvoenie Arktiki i kontinental’nogo shel’fa v ramkakh 13-i Mezhdunar. konf. i vystavki po osvoeniyu nefti i gaza Rossiiskoi Arktiki i kontinental’nogo shel’fa stran SNG (Coll. of Works of Laureates of the Int. Contest of Sci., Sci.-Tech., and Innovative Research Intended to Development and Reclamation of the Arctic and Continental Shelf within 13th Int. Conf. and Exposition on Oil and Gas Extraction in the Russia Arctic and Continental Shelf of the CIS Member States), St. Petersburg, 2017, St. Petersburg: Khimizdat, 2017, pp. 31–33.

  20. Orlov, V.V., Principles of controlled creation of nanosized structural elements in pipe steels at severe plastic deformations, Vopr. Materialoved., 2011, no. 2, pp. 5–17.

  21. Sych, O.V., Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 2. Technology of production, structure and properties of sheet hire performance, Vopr. Materialoved., 2018, no. 4, pp. 14–41. https://doi.org/10.22349/1994-6716-2018-96-4-14-41

  22. Making of cold-resistant high-strength ship steel AB2-PK is introduced in Russia. https://topwar.ru/187815-v-rossii-osvoili-vyplavku-hladostojkoj-vysokoprochnoj-sudovoj-stali-ab2-pk.html. Cited December 5, 2022.

  23. Motovilikha is going to occupy a quarter of the Russian market of steel for shipbuilding. https://rostec.ru/ news/motovilikha-namerena-zanyat-chetvert-rossiyskogo-rynka-stali-dlya-sudostroeniya/. Cited December 5, 2022.

  24. Oryshchenko, A.S., Malyshevskii, V.A., Il’in, A.V., and Khlusova, E.I., Steels for mainstream pipelines, Biznes Innovatsii, 2013, no. 3, pp. 68–71.

  25. Yoo, J.Y., Chon, S.H., and Seo, D.H., Microstructure and mechanical properties of X80 linepipe steel with high strain aging resistance, Pipeline Technology Conf., Ostend, Germany, 2009, 2009, pp. Ostend2009–020.

  26. Ermakov, B.S., Sleptsov, O.I., and Petrov, P.P., Prospects development of metallurgy in Yakutia in connection with the creation of new generations of northern steels, Nauka Obraz., 2015, no. 3, pp. 59–63.

  27. Ermakov, B.S. and Solntsev, Yu.P., Nizkotemperaturnye svoistva legirovannykh splavov sistemy Fe-Mn. Prochnost’ materialov i konstruktsii pri nizkikh temperaturakh (Low-Temperature Properties of Modified Fe-Mn Alloys: Strength of Materials and Structures at Low Temperatures), St. Petersburg: SPbGUNiPT, 2003.

  28. Solntsev, Yu.P., Ermakov, B.S., and Povarov, D.V., Materialy i nadezhnost’ nizkotemperaturnykh konstruktsii (Materials and Reliability of Low-Temperature Structures), St. Petersburg: Khimizdat, 2007.

  29. Solntsev, Yu.P., Ermakov, B.S., and Sleptsov, O.I., Materialy dlya nizkikh i kriogennykh temperatur. Entsiklopedicheskii spravochnik (Materials for Low and Cryogenic Temperatures: Encyclopedic Reference Book), St. Petersburg: Khimizdat, 2008.

  30. Nikitin, V.N., Nastich, S.Y., Smirnov, L.A., Mal’tsev, A.B., Denisov, S.V., Chevskaya, O.N., Brylin, A.M., Kurash, V.S., Maslyuk, V.M., and Tarasov, V.M., Economically alloyed high-strength steel for use in mine equipment, Steel Transl., 2016, vol. 46, no. 10, pp. 742–751. https://doi.org/10.3103/s0967091216100089

    Article  Google Scholar 

  31. Konyukhov, A.D., Efimov, V.P., and Demin, K.P., High-strength steels and alloys for hulls of freight cars, Tyazh. Mashinostr., 2006, no. 12, pp. 31–34.

  32. Meshcheryakova, O.A., High-strength steel: Russian producers are capable of satisfying the demand, Gornaya Prom-st., 2020, no. 3, pp. 44–46.

  33. Denisov, S.V., Stekanov, P.A., Poletskov, P.P., Gushchina, M.S., and Nikitenko, O.A., Production of heavy plates of pipe steel with increased strength and cold resistance on the 5000 rolling mill at PJSC MMK, Steel Transl., 2019, vol. 49, no. 4, pp. 271–276. https://doi.org/10.3103/s0967091219040053

    Article  Google Scholar 

  34. Poletskov, P.P., Gushchina, M.S., Koptseva, N.V., Nikitenko, O.A., and Efimova, Yu.Yu., A study of the effect of nickel on structural and phase transformations and properties of high-strength medium-carbon complexly alloyed steel, Met. Sci. Heat Treat., 2020, vol. 61, nos. 11–12, pp. 681–686. https://doi.org/10.1007/s11041-020-00482-8

    Article  CAS  Google Scholar 

  35. Poletskov, P.P., Kuznetsova, A.S., Nikitenko, O.A., and Alekseev, D.Yu., The study of influence of heat treatment procedures on structure and properties of the new high-strength steel with increased cold resistance, CIS Iron Steel Rev., 2020, vol. 20, pp. 50–54. https://doi.org/10.17580/cisisr.2020.02.11

    Article  Google Scholar 

  36. Chukin, M.V., Poletskov, P.P., Gushchina, M.S., Kuznetsova, A.S., Nikitenko, O.A., and Alekseev, D.Yu., Development of import-replacing technology for production of rolled sheets of arctic high-strength structural steel, Proizvod. Prokata, 2019, no. 4, pp. 5–11. https://doi.org/10.31044/1684-257X-2019-0-4-5-11

  37. Poletskov, P.P., Kuznetsova, A.S., Alekseev, D.Yu., Nikitenko, O.A., and Lopatina, E.V., Analysis of global development in producing hot-rolled high-strength cold-resistant sheets with a yield strength of 600 MPa and over, Vestn. Magnitogorskogo Gos. Tekh. Univ. G.I. Nosova, 2020, vol. 18, no. 4, pp. 32–38. https://doi.org/10.18503/1995-2732-2020-18-4-32-38

    Article  Google Scholar 

  38. MAGSTRONG catalog: High-strength and wear-resistant welded steels. http://www.mmk.ru/catalogs/ metal_products/magstrong/#. Cited November 29, 2022.

  39. Poletskov, P.P., Gulin, A.E., Emaleeva, D.G., Kuznetsova, A.S., Alekseev, D.Yu., and Kukhta, Yu.B., Analysis of current areas of research in production of multifunctional materials for extreme operating conditions, Vestn. Magnitogorskogo Gos. Tekh. Univ. G.I. Nosova, 2021, vol. 19, no. 3, pp. 109–114. https://doi.org/10.18503/1995-2732-2021-19-3-109-114

    Article  Google Scholar 

  40. JFE Steel Corporation catalog. https://www.jfe-steel. co.jp/en/products/plate/catalog/c1e-001.pdf. Cited November 29, 2022.

  41. Strenx. Performance steel. https://www.ssab.com/ en/brands-and-products/strenx. Cited November 29, 2022.

  42. Hardox® wear plate—Wear and abrasion resistant steel, SSAB. https://www.ssab.com/en/brands-and-products/hardox. Cited November 29, 2022.

  43. Dillinger proprietary steels. https://www.dillinger.de/ d/en/products/proprietary-steels/dillidur/index.shtml. Cited November 29, 2022.

  44. ABREX. Abrasion resistant steel plate. http://www. abrexplates.com/PDF/abrex-nssmc-abrasion-resistant-plate-catalogue.pdf. Cited November 29, 2022.

  45. Chukin, M.V., Poletskov, P.P., Nabatchikov, D.G., Emaleeva, D.G., Gushchina, M.S., and Kuznetsova, A.S., Analysis of technical requirements for nanostructured steel plates resistant to ultra-low temperatures, Vestn. Yuzhno-Ural. Gos. Univ. Ser.: Metall., 2017, vol. 17, no. 2, pp. 52–60. https://doi.org/10.14529/met170207

    Article  Google Scholar 

  46. Chernyshov, E.A., Baev, I.M., Romanov, A.D., and Romanova, E.A., Cold resistance and mechanical properties of high-strength medium alloy steel depending on the technology of cast billets production, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2019, vol. 62, no. 1, pp. 79–84. https://doi.org/10.17073/0368-0797-2019-1-79-85

    Article  CAS  Google Scholar 

  47. Khlusova, E.I., Sych, O.V., and Orlov, V.V., Cold-resistant steels: Structure, properties, and technologies, Phys. Met. Metallogr., 2021, vol. 122, no. 6, pp. 579–613. https://doi.org/10.1134/s0031918x21060041

    Article  CAS  Google Scholar 

  48. Werner, M.L. and Pursche, F., Modern high strength low alloyed steels, Proc. 1st Int. Conf. about Recent Trends in Structural Materials, 2010, pp. 13–18.

  49. Subhani, A.R., Mondal, D.K., Mondal, C., Roy, H., and Maity, J., Development of a high-strength low-carbon steel with reasonable ductility through thermal cycling, J. Mater. Eng. Perform., 2019, vol. 28, no. 4, pp. 2192–2201. https://doi.org/10.1007/s11665-019-03969-5

    Article  CAS  Google Scholar 

  50. Poleckov, P.P., Nikitenko, O.A., and Kuznetsova, A.S., Effects of heat treatment on microstructure parameters, mechanical properties and cold resistance of sparingly alloyed high-strength steel, Defect Diffus. Forum, 2021, vol. 410, pp. 197–202. doi 10.4028/www.scientific.net/ddf.410.197

  51. Tissen, R.G., Paul’, G., and Zebal’d, R., New high-strength steel grades with improved technological properties, Chern. Met., 2019, no. 8, pp. 51–55.

  52. Schröter, F., Höherfeste Stähle für den Stahlbau – Auswahl und Anwendung, Bauingenieur, 2003, vol. 78, no. 9, pp. 426–432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kupriyanova.

Ethics declarations

The author declares that he (she) has no conflicts of interest.

Additional information

Translated by A. Kolemesin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupriyanova, O.A. New Generation High-Strength Cold-Resistant Steels: History, Current Status and Development Prospects. Steel Transl. 53, 571–577 (2023). https://doi.org/10.3103/S0967091223060062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091223060062

Keywords:

Navigation